Nonlinear conjugate gradient methods: worst-case convergence rates via computer-assisted analyses

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Shuvomoy Das Gupta, Robert M. Freund, Xu Andy Sun, Adrien Taylor
{"title":"Nonlinear conjugate gradient methods: worst-case convergence rates via computer-assisted analyses","authors":"Shuvomoy Das Gupta, Robert M. Freund, Xu Andy Sun, Adrien Taylor","doi":"10.1007/s10107-024-02127-7","DOIUrl":null,"url":null,"abstract":"<p>We propose a computer-assisted approach to the analysis of the worst-case convergence of nonlinear conjugate gradient methods (NCGMs). Those methods are known for their generally good empirical performances for large-scale optimization, while having relatively incomplete analyses. Using our computer-assisted approach, we establish novel complexity bounds for the Polak-Ribière-Polyak (PRP) and the Fletcher-Reeves (FR) NCGMs for smooth strongly convex minimization. In particular, we construct mathematical proofs that establish the first non-asymptotic convergence bound for FR (which is historically the first developed NCGM), and a much improved non-asymptotic convergence bound for PRP. Additionally, we provide simple adversarial examples on which these methods do not perform better than gradient descent with exact line search, leaving very little room for improvements on the same class of problems.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02127-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a computer-assisted approach to the analysis of the worst-case convergence of nonlinear conjugate gradient methods (NCGMs). Those methods are known for their generally good empirical performances for large-scale optimization, while having relatively incomplete analyses. Using our computer-assisted approach, we establish novel complexity bounds for the Polak-Ribière-Polyak (PRP) and the Fletcher-Reeves (FR) NCGMs for smooth strongly convex minimization. In particular, we construct mathematical proofs that establish the first non-asymptotic convergence bound for FR (which is historically the first developed NCGM), and a much improved non-asymptotic convergence bound for PRP. Additionally, we provide simple adversarial examples on which these methods do not perform better than gradient descent with exact line search, leaving very little room for improvements on the same class of problems.

Abstract Image

非线性共轭梯度方法:通过计算机辅助分析实现最坏情况收敛率
我们提出了一种计算机辅助方法,用于分析非线性共轭梯度方法(NCGMs)的最坏收敛情况。众所周知,这些方法在大规模优化方面具有普遍良好的经验性能,但分析却相对不完整。利用我们的计算机辅助方法,我们为用于平滑强凸最小化的 Polak-Ribière-Polyak (PRP) 和 Fletcher-Reeves (FR) NCGMs 建立了新的复杂度边界。特别是,我们构建了数学证明,为 FR(历史上第一个开发的 NCGM)建立了第一个非渐近收敛约束,并为 PRP 建立了一个大大改进的非渐近收敛约束。此外,我们还提供了一些简单的对抗性示例,在这些示例中,这些方法的性能并不比使用精确线性搜索的梯度下降法更好,因此在同一类问题上的改进空间很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信