Asymptotic Properties of ReLU FFN Sieve Estimators

Frank J. Fabozzi, Hasan Fallahgoul, Vincentius Franstianto, Grégoire Loeper
{"title":"Asymptotic Properties of ReLU FFN Sieve Estimators","authors":"Frank J. Fabozzi, Hasan Fallahgoul, Vincentius Franstianto, Grégoire Loeper","doi":"10.1515/snde-2023-0072","DOIUrl":null,"url":null,"abstract":"Recently, machine learning algorithms have increasing become popular tools for economic and financial forecasting. While there are several machine learning algorithms for doing so, a powerful and efficient algorithm for forecasting purposes is the multi-layer, multi-node neural network with rectified linear unit (ReLU) activation function – deep neural network (DNN). Studies have demonstrated the empirical applications of DNN but have devoted less research to investigate its statistical properties which is mainly due to its severe nonlinearity and heavy parametrization. By borrowing tools from a non-parametric regression framework, sieve estimator, we first show that there exists such a sieve estimator for a DNN. We next establish three asymptotic properties of the ReLU network: consistency, sieve-based convergence rate, and asymptotic normality, and then validate our theoretical results using Monte Carlo analysis.","PeriodicalId":501448,"journal":{"name":"Studies in Nonlinear Dynamics & Econometrics","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics & Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/snde-2023-0072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, machine learning algorithms have increasing become popular tools for economic and financial forecasting. While there are several machine learning algorithms for doing so, a powerful and efficient algorithm for forecasting purposes is the multi-layer, multi-node neural network with rectified linear unit (ReLU) activation function – deep neural network (DNN). Studies have demonstrated the empirical applications of DNN but have devoted less research to investigate its statistical properties which is mainly due to its severe nonlinearity and heavy parametrization. By borrowing tools from a non-parametric regression framework, sieve estimator, we first show that there exists such a sieve estimator for a DNN. We next establish three asymptotic properties of the ReLU network: consistency, sieve-based convergence rate, and asymptotic normality, and then validate our theoretical results using Monte Carlo analysis.
ReLU FFN 筛选估计器的渐近特性
最近,机器学习算法日益成为经济和金融预测的流行工具。虽然有多种机器学习算法可用于预测,但用于预测的强大而高效的算法是具有整流线性单元(ReLU)激活函数的多层多节点神经网络--深度神经网络(DNN)。研究已经证明了 DNN 的经验应用,但对其统计特性的研究较少,这主要是由于其严重的非线性和参数化程度高。通过借用非参数回归框架的工具--筛子估计器,我们首先证明了 DNN 存在这样一个筛子估计器。接下来,我们建立了 ReLU 网络的三个渐近特性:一致性、基于筛子的收敛速率和渐近正态性,然后利用蒙特卡罗分析验证了我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信