Using Multi-Encoder Semi-Implicit Graph Variational Autoencoder to Analyze Single-Cell RNA Sequencing Data

IF 3.6 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Shengwen Tian;Cunmei Ji;Jiancheng Ni;Yutian Wang;Chunhou Zheng
{"title":"Using Multi-Encoder Semi-Implicit Graph Variational Autoencoder to Analyze Single-Cell RNA Sequencing Data","authors":"Shengwen Tian;Cunmei Ji;Jiancheng Ni;Yutian Wang;Chunhou Zheng","doi":"10.1109/TCBB.2024.3458170","DOIUrl":null,"url":null,"abstract":"Rapid advances in single-cell RNA sequencing (scRNA-seq) have made it possible to characterize cell states at a high resolution view for large scale library. scRNA-seq data contains a great deal of biological information, which can be mainly used to discover cell subtypes and track cell development. However, traditional methods face many challenges in addressing scRNA-seq data with high dimensions and high sparsity. For better analysis of scRNA-seq data, we propose a new framework called MSVGAE based on variational graph auto-encoder and graph attention networks. Specifically, we introduce multiple encoders to learn features at different scales and control for uninformative features. Moreover, different noises are added to encoders to promote the propagation of graph structural information and distribution uncertainty. Therefore, some complex posterior distributions can be captured by our model. MSVGAE maps scRNA-seq data with high dimensions and high noise into the low-dimensional latent space, which is beneficial for downstream tasks. In particular, MSVGAE can handle extremely sparse data. Before the experiment, we create 24 simulated datasets to simulate various biological scenarios and collect 8 real-world datasets. The experimental results of clustering, visualization and marker genes analysis indicate that MSVGAE model has excellent accuracy and robustness in analyzing scRNA-seq data.","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"21 6","pages":"2280-2291"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10675446/","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid advances in single-cell RNA sequencing (scRNA-seq) have made it possible to characterize cell states at a high resolution view for large scale library. scRNA-seq data contains a great deal of biological information, which can be mainly used to discover cell subtypes and track cell development. However, traditional methods face many challenges in addressing scRNA-seq data with high dimensions and high sparsity. For better analysis of scRNA-seq data, we propose a new framework called MSVGAE based on variational graph auto-encoder and graph attention networks. Specifically, we introduce multiple encoders to learn features at different scales and control for uninformative features. Moreover, different noises are added to encoders to promote the propagation of graph structural information and distribution uncertainty. Therefore, some complex posterior distributions can be captured by our model. MSVGAE maps scRNA-seq data with high dimensions and high noise into the low-dimensional latent space, which is beneficial for downstream tasks. In particular, MSVGAE can handle extremely sparse data. Before the experiment, we create 24 simulated datasets to simulate various biological scenarios and collect 8 real-world datasets. The experimental results of clustering, visualization and marker genes analysis indicate that MSVGAE model has excellent accuracy and robustness in analyzing scRNA-seq data.
使用多编码器半隐式图变自动编码器分析单细胞 RNA 测序数据
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
6.70%
发文量
479
审稿时长
3 months
期刊介绍: IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信