Yang Hua;Zhenhua Feng;Xiaoning Song;Hui Li;Tianyang Xu;Xiao-Jun Wu;Dong-Jun Yu
{"title":"APMG: 3D Molecule Generation Driven by Atomic Chemical Properties","authors":"Yang Hua;Zhenhua Feng;Xiaoning Song;Hui Li;Tianyang Xu;Xiao-Jun Wu;Dong-Jun Yu","doi":"10.1109/TCBB.2024.3457807","DOIUrl":null,"url":null,"abstract":"Recently, mask-fill-based 3D Molecular Generation (MG) methods have become very popular in virtual drug design. However, the existing MG methods ignore the chemical properties of atoms and contain inappropriate atomic position training data, which limits their generation capability. To mitigate the above issues, this paper presents a novel mask-fill-based 3D molecule generation model driven by atomic chemical properties (APMG). Specifically, we construct a new attention-MPNN-based encoder and introduce the electronic information into atom representations to enrich chemical properties. Also, a multi-functional classifier is designed to predict the electronic information of each generated atom, guiding the type prediction of elements and bonds. By design, the proposed method uses the chemical properties of atoms and their correlations for high-quality molecule generation. Second, to optimize the atomic position training data, we propose a novel atomic training position generation approach using the Chi-Square distribution. We evaluate our APMG method on the CrossDocked dataset and visualize the docking states of the pockets and generated molecules. The obtained results demonstrate the superiority and merits of APMG over the state-of-the-art approaches.","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"21 6","pages":"2269-2279"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10675370/","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, mask-fill-based 3D Molecular Generation (MG) methods have become very popular in virtual drug design. However, the existing MG methods ignore the chemical properties of atoms and contain inappropriate atomic position training data, which limits their generation capability. To mitigate the above issues, this paper presents a novel mask-fill-based 3D molecule generation model driven by atomic chemical properties (APMG). Specifically, we construct a new attention-MPNN-based encoder and introduce the electronic information into atom representations to enrich chemical properties. Also, a multi-functional classifier is designed to predict the electronic information of each generated atom, guiding the type prediction of elements and bonds. By design, the proposed method uses the chemical properties of atoms and their correlations for high-quality molecule generation. Second, to optimize the atomic position training data, we propose a novel atomic training position generation approach using the Chi-Square distribution. We evaluate our APMG method on the CrossDocked dataset and visualize the docking states of the pockets and generated molecules. The obtained results demonstrate the superiority and merits of APMG over the state-of-the-art approaches.
期刊介绍:
IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system