An intelligent non-uniform mesh to improve errors of a stable numerical method for time-tempered fractional advection–diffusion equation with weakly singular solution

Mahdi Ahmadinia, Mokhtar Abbasi, Parisa Hadi
{"title":"An intelligent non-uniform mesh to improve errors of a stable numerical method for time-tempered fractional advection–diffusion equation with weakly singular solution","authors":"Mahdi Ahmadinia, Mokhtar Abbasi, Parisa Hadi","doi":"10.1007/s11227-024-06442-w","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a finite volume element method for solving the time-tempered fractional advection–diffusion equation with weakly singular solution at initial time <span>\\(t=0\\)</span>. An innovative approach is proposed to construct an intelligent non-uniform temporal mesh, which significantly reduces errors as compared to using a uniform temporal mesh. The error reduction is quantified in terms of percentage improvement of errors. Due to the presence of a large number of integral calculations involving complicated functions, we used parallel computing techniques to accelerate the computation process. The stability of the method is rigorously proven, and numerical examples are provided to demonstrate the effectiveness of the method and validate the theoretical results.</p>","PeriodicalId":501596,"journal":{"name":"The Journal of Supercomputing","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11227-024-06442-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a finite volume element method for solving the time-tempered fractional advection–diffusion equation with weakly singular solution at initial time \(t=0\). An innovative approach is proposed to construct an intelligent non-uniform temporal mesh, which significantly reduces errors as compared to using a uniform temporal mesh. The error reduction is quantified in terms of percentage improvement of errors. Due to the presence of a large number of integral calculations involving complicated functions, we used parallel computing techniques to accelerate the computation process. The stability of the method is rigorously proven, and numerical examples are provided to demonstrate the effectiveness of the method and validate the theoretical results.

Abstract Image

用智能非均匀网格改善弱奇异解的时间温差分数平流-扩散方程稳定数值方法的误差
本文介绍了一种有限体积元方法,用于求解在初始时间具有弱奇异解的时间温差分数平流-扩散方程。本文提出了一种创新方法来构建智能非均匀时空网格,与使用均匀时空网格相比,该方法可显著减少误差。误差的减少以误差改善的百分比来量化。由于存在大量涉及复杂函数的积分计算,我们采用了并行计算技术来加速计算过程。我们严格证明了该方法的稳定性,并提供了数值示例,以展示该方法的有效性并验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信