GMS: an efficient fully homomorphic encryption scheme for secure outsourced matrix multiplication

Jianxin Gao, Ying Gao
{"title":"GMS: an efficient fully homomorphic encryption scheme for secure outsourced matrix multiplication","authors":"Jianxin Gao, Ying Gao","doi":"10.1007/s11227-024-06449-3","DOIUrl":null,"url":null,"abstract":"<p>Fully homomorphic encryption (FHE) is capable of handling sensitive encrypted data in untrusted computing environments. The efficient application of FHE schemes in secure outsourced computation can effectively address security and privacy concerns. This paper presents a novel fully homomorphic encryption scheme called GMS, based on the <i>n</i>-secret learning with errors (LWE) assumption. By utilizing block matrix and decomposition technology, GMS achieves shorter encryption and decryption times and smaller ciphertext sizes compared to existing FHE schemes. For secure outsourced matrix multiplication <span>\\({\\textbf {A}}_{m\\times n}\\cdot {\\textbf {B}}_{n\\times l}\\)</span> with arbitrary dimensions, GMS only requires <span>\\(O(\\max \\{m,n,l\\})\\)</span> rotations and one homomorphic multiplication. Compared to the state-of-the-art methods, our approach stands out by achieving a significant reduction in the number of rotations by a factor of <span>\\(O(\\log \\max \\{n, l\\})\\)</span>, along with a decrease in the number of homomorphic multiplications by a factor of <i>n</i> and <span>\\(O(\\min \\{m, n, l\\})\\)</span>. The experimental results demonstrate that GMS shows superior performance for secure outsourced matrix multiplication of any dimension. For example, when encrypting a <span>\\(64\\times 64\\)</span>-dimensional matrix, the size of the ciphertext is only 1.27 MB. The encryption and decryption process takes approximately 0.2 s. For matrix multiplication <span>\\({\\textbf {A}}_{64\\times 64}\\cdot {\\textbf {B}}_{64\\times 64}\\)</span>, the runtime of our method is 39.98 s, achieving a speedup of up to 5X and 2X.</p>","PeriodicalId":501596,"journal":{"name":"The Journal of Supercomputing","volume":"122 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11227-024-06449-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fully homomorphic encryption (FHE) is capable of handling sensitive encrypted data in untrusted computing environments. The efficient application of FHE schemes in secure outsourced computation can effectively address security and privacy concerns. This paper presents a novel fully homomorphic encryption scheme called GMS, based on the n-secret learning with errors (LWE) assumption. By utilizing block matrix and decomposition technology, GMS achieves shorter encryption and decryption times and smaller ciphertext sizes compared to existing FHE schemes. For secure outsourced matrix multiplication \({\textbf {A}}_{m\times n}\cdot {\textbf {B}}_{n\times l}\) with arbitrary dimensions, GMS only requires \(O(\max \{m,n,l\})\) rotations and one homomorphic multiplication. Compared to the state-of-the-art methods, our approach stands out by achieving a significant reduction in the number of rotations by a factor of \(O(\log \max \{n, l\})\), along with a decrease in the number of homomorphic multiplications by a factor of n and \(O(\min \{m, n, l\})\). The experimental results demonstrate that GMS shows superior performance for secure outsourced matrix multiplication of any dimension. For example, when encrypting a \(64\times 64\)-dimensional matrix, the size of the ciphertext is only 1.27 MB. The encryption and decryption process takes approximately 0.2 s. For matrix multiplication \({\textbf {A}}_{64\times 64}\cdot {\textbf {B}}_{64\times 64}\), the runtime of our method is 39.98 s, achieving a speedup of up to 5X and 2X.

Abstract Image

GMS:用于安全外包矩阵乘法的高效全同态加密方案
全同态加密(FHE)能够在不受信任的计算环境中处理敏感的加密数据。在安全外包计算中有效应用 FHE 方案,可以有效解决安全和隐私问题。本文基于 n 密钥错误学习(LWE)假设,提出了一种名为 GMS 的新型全同态加密方案。通过利用分块矩阵和分解技术,GMS 与现有的 FHE 方案相比,加密和解密时间更短,密文规模更小。对于任意维度的安全外包矩阵乘法({\textbf {A}}_{m\times n}\cdot {\textbf {B}}_{n\times l}),GMS只需要\(O(\max \{m,n,l\})\) 旋转和一次同态乘法。与最先进的方法相比,我们的方法显著减少了旋转次数(O(\log \max \{n,l\}),同时减少了同态相乘次数(n 和 \(O(\min \{m,n,l\}))。实验结果表明,GMS 在任何维度的安全外包矩阵乘法中都表现出卓越的性能。例如,在加密一个(64乘以64)维矩阵时,密文的大小仅为1.27 MB。对于矩阵乘法({\textbf {A}}_{64\times 64}\cdot {\textbf {B}}_{64\times 64}/),我们的方法的运行时间为39.98秒,速度分别提高了5倍和2倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信