Optimizing connectivity: a novel AI approach to assess transmission levels in optical networks

Mehaboob Mujawar, S. Manikandan, Monica Kalbande, Puneet Kumar Aggarwal, Nallam Krishnaiah, Yasin Genc
{"title":"Optimizing connectivity: a novel AI approach to assess transmission levels in optical networks","authors":"Mehaboob Mujawar, S. Manikandan, Monica Kalbande, Puneet Kumar Aggarwal, Nallam Krishnaiah, Yasin Genc","doi":"10.1007/s11227-024-06410-4","DOIUrl":null,"url":null,"abstract":"<p>Introducing a novel approach for assessing connectivity in dynamic optical networks, we propose the quantum-driven particle swarm-optimized self-adaptive support vector machine (QPSO-SASVM) model. By integrating quantum computing and machine learning, this advanced framework offers enhanced convergence and robustness. Tested against a network simulation with 187 nodes and 96 DWDM channels, QPSO-SASVM outperforms traditional benchmarks such as LSTM, Naive method, E-DLSTM, and GRU. Evaluation using metrics such as signal-to-noise ratio, ROC curve, RMSE, and <i>R</i><sup>2</sup> consistently demonstrates superior predictive accuracy and adaptability. These results underscore QPSO-SASVM as a powerful tool for precise and reliable prediction in dynamic optical network environments.</p>","PeriodicalId":501596,"journal":{"name":"The Journal of Supercomputing","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11227-024-06410-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introducing a novel approach for assessing connectivity in dynamic optical networks, we propose the quantum-driven particle swarm-optimized self-adaptive support vector machine (QPSO-SASVM) model. By integrating quantum computing and machine learning, this advanced framework offers enhanced convergence and robustness. Tested against a network simulation with 187 nodes and 96 DWDM channels, QPSO-SASVM outperforms traditional benchmarks such as LSTM, Naive method, E-DLSTM, and GRU. Evaluation using metrics such as signal-to-noise ratio, ROC curve, RMSE, and R2 consistently demonstrates superior predictive accuracy and adaptability. These results underscore QPSO-SASVM as a powerful tool for precise and reliable prediction in dynamic optical network environments.

Abstract Image

优化连接:评估光网络传输水平的新型人工智能方法
我们提出了量子驱动的粒子群优化自适应支持向量机(QPSO-SASVM)模型,为评估动态光网络的连通性引入了一种新方法。通过整合量子计算和机器学习,这一先进的框架具有更强的收敛性和鲁棒性。通过对 187 个节点和 96 个 DWDM 信道的网络模拟进行测试,QPSO-SASVM 优于 LSTM、Naive 方法、E-DLSTM 和 GRU 等传统基准。使用信噪比、ROC 曲线、RMSE 和 R2 等指标进行的评估一致表明,QPSO-SASVM 具有出色的预测准确性和适应性。这些结果表明,QPSO-SASVM 是在动态光网络环境中进行精确可靠预测的有力工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信