{"title":"Higher-Order Soliton Solutions for the Derivative Nonlinear Schrödinger Equation via Improved Riemann–Hilbert Method","authors":"Yonghui Kuang, Lixin Tian","doi":"10.1007/s44198-024-00228-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper we discuss an improved Riemann–Hilbert method, by which arbitrary higher-order soliton solutions for the derivative nonlinear Schrödinger equation can be directly obtained. The explicit determinant form of a higher-order soliton which corresponds to one <i>p</i>th order pole is given. Besides the interaction related to one simple pole and the other one double pole is considered.</p>","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"49 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s44198-024-00228-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we discuss an improved Riemann–Hilbert method, by which arbitrary higher-order soliton solutions for the derivative nonlinear Schrödinger equation can be directly obtained. The explicit determinant form of a higher-order soliton which corresponds to one pth order pole is given. Besides the interaction related to one simple pole and the other one double pole is considered.
期刊介绍:
Journal of Nonlinear Mathematical Physics (JNMP) publishes research papers on fundamental mathematical and computational methods in mathematical physics in the form of Letters, Articles, and Review Articles.
Journal of Nonlinear Mathematical Physics is a mathematical journal devoted to the publication of research papers concerned with the description, solution, and applications of nonlinear problems in physics and mathematics.
The main subjects are:
-Nonlinear Equations of Mathematical Physics-
Quantum Algebras and Integrability-
Discrete Integrable Systems and Discrete Geometry-
Applications of Lie Group Theory and Lie Algebras-
Non-Commutative Geometry-
Super Geometry and Super Integrable System-
Integrability and Nonintegrability, Painleve Analysis-
Inverse Scattering Method-
Geometry of Soliton Equations and Applications of Twistor Theory-
Classical and Quantum Many Body Problems-
Deformation and Geometric Quantization-
Instanton, Monopoles and Gauge Theory-
Differential Geometry and Mathematical Physics