Improving estimation for asymptotically independent bivariate extremes via global estimators for the angular dependence function

IF 1.1 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
C. J. R. Murphy-Barltrop, J. L. Wadsworth, E. F. Eastoe
{"title":"Improving estimation for asymptotically independent bivariate extremes via global estimators for the angular dependence function","authors":"C. J. R. Murphy-Barltrop, J. L. Wadsworth, E. F. Eastoe","doi":"10.1007/s10687-024-00490-4","DOIUrl":null,"url":null,"abstract":"<p>Modelling the extremal dependence of bivariate variables is important in a wide variety of practical applications, including environmental planning, catastrophe modelling and hydrology. The majority of these approaches are based on the framework of bivariate regular variation, and a wide range of literature is available for estimating the dependence structure in this setting. However, such procedures are only applicable to variables exhibiting asymptotic dependence, even though asymptotic independence is often observed in practice. In this paper, we consider the so-called ‘angular dependence function’; this quantity summarises the extremal dependence structure for asymptotically independent variables. Until recently, only pointwise estimators of the angular dependence function have been available. We introduce a range of global estimators and compare them to another recently introduced technique for global estimation through a systematic simulation study, and a case study on river flow data from the north of England, UK.</p>","PeriodicalId":49274,"journal":{"name":"Extremes","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extremes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10687-024-00490-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Modelling the extremal dependence of bivariate variables is important in a wide variety of practical applications, including environmental planning, catastrophe modelling and hydrology. The majority of these approaches are based on the framework of bivariate regular variation, and a wide range of literature is available for estimating the dependence structure in this setting. However, such procedures are only applicable to variables exhibiting asymptotic dependence, even though asymptotic independence is often observed in practice. In this paper, we consider the so-called ‘angular dependence function’; this quantity summarises the extremal dependence structure for asymptotically independent variables. Until recently, only pointwise estimators of the angular dependence function have been available. We introduce a range of global estimators and compare them to another recently introduced technique for global estimation through a systematic simulation study, and a case study on river flow data from the north of England, UK.

Abstract Image

通过角依赖函数的全局估计器改进渐近独立双变量极值的估计方法
在环境规划、灾难建模和水文学等多种实际应用中,对二元变量的极值依赖性建模非常重要。这些方法大多基于二元正则变异框架,有大量文献可用于估计这种情况下的依赖结构。然而,这些方法只适用于表现出渐进依赖性的变量,尽管在实践中经常可以观察到渐进独立性。在本文中,我们考虑的是所谓的 "角依赖函数";这个量概括了渐近独立变量的极值依赖结构。直到最近,才有了角度依赖函数的点估计值。我们介绍了一系列全局估算器,并通过系统模拟研究和英国英格兰北部河流流量数据的案例研究,将它们与最近推出的另一种全局估算技术进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Extremes
Extremes MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.20
自引率
7.70%
发文量
15
审稿时长
>12 weeks
期刊介绍: Extremes publishes original research on all aspects of statistical extreme value theory and its applications in science, engineering, economics and other fields. Authoritative and timely reviews of theoretical advances and of extreme value methods and problems in important applied areas, including detailed case studies, are welcome and will be a regular feature. All papers are refereed. Publication will be swift: in particular electronic submission and correspondence is encouraged. Statistical extreme value methods encompass a very wide range of problems: Extreme waves, rainfall, and floods are of basic importance in oceanography and hydrology, as are high windspeeds and extreme temperatures in meteorology and catastrophic claims in insurance. The waveforms and extremes of random loads determine lifelengths in structural safety, corrosion and metal fatigue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信