{"title":"Estimation of marginal excess moments for Weibull-type distributions","authors":"Yuri Goegebeur, Armelle Guillou, Jing Qin","doi":"10.1007/s10687-024-00494-0","DOIUrl":null,"url":null,"abstract":"<p>We consider the estimation of the marginal excess moment (<i>MEM</i>), which is defined for a random vector (<i>X</i>, <i>Y</i>) and a parameter <span>\\(\\beta >0\\)</span> as <span>\\(\\mathbb {E}[(X-Q_{X}(1-p))_{+}^{\\beta }|Y> Q_{Y}(1-p)]\\)</span> provided <span>\\(\\mathbb {E}|X|^{\\beta }< \\infty \\)</span>, and where <span>\\(y_{+}:=\\max (0,y)\\)</span>, <span>\\(Q_{X}\\)</span> and <span>\\(Q_{Y}\\)</span> are the quantile functions of <i>X</i> and <i>Y</i> respectively, and <span>\\(p\\in (0,1)\\)</span>. Our interest is in the situation where the random variable <i>X</i> is of Weibull-type while the distribution of <i>Y</i> is kept general, the extreme dependence structure of (<i>X</i>, <i>Y</i>) converges to that of a bivariate extreme value distribution, and we let <span>\\(p \\downarrow 0\\)</span> as the sample size <span>\\(n \\rightarrow \\infty \\)</span>. By using extreme value arguments we introduce an estimator for the marginal excess moment and we derive its limiting distribution. The finite sample properties of the proposed estimator are evaluated with a simulation study and the practical applicability is illustrated on a dataset of wave heights and wind speeds.</p>","PeriodicalId":49274,"journal":{"name":"Extremes","volume":"51 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extremes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10687-024-00494-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the estimation of the marginal excess moment (MEM), which is defined for a random vector (X, Y) and a parameter \(\beta >0\) as \(\mathbb {E}[(X-Q_{X}(1-p))_{+}^{\beta }|Y> Q_{Y}(1-p)]\) provided \(\mathbb {E}|X|^{\beta }< \infty \), and where \(y_{+}:=\max (0,y)\), \(Q_{X}\) and \(Q_{Y}\) are the quantile functions of X and Y respectively, and \(p\in (0,1)\). Our interest is in the situation where the random variable X is of Weibull-type while the distribution of Y is kept general, the extreme dependence structure of (X, Y) converges to that of a bivariate extreme value distribution, and we let \(p \downarrow 0\) as the sample size \(n \rightarrow \infty \). By using extreme value arguments we introduce an estimator for the marginal excess moment and we derive its limiting distribution. The finite sample properties of the proposed estimator are evaluated with a simulation study and the practical applicability is illustrated on a dataset of wave heights and wind speeds.
ExtremesMATHEMATICS, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.20
自引率
7.70%
发文量
15
审稿时长
>12 weeks
期刊介绍:
Extremes publishes original research on all aspects of statistical extreme value theory and its applications in science, engineering, economics and other fields. Authoritative and timely reviews of theoretical advances and of extreme value methods and problems in important applied areas, including detailed case studies, are welcome and will be a regular feature. All papers are refereed. Publication will be swift: in particular electronic submission and correspondence is encouraged.
Statistical extreme value methods encompass a very wide range of problems: Extreme waves, rainfall, and floods are of basic importance in oceanography and hydrology, as are high windspeeds and extreme temperatures in meteorology and catastrophic claims in insurance. The waveforms and extremes of random loads determine lifelengths in structural safety, corrosion and metal fatigue.