A. M. Ribau, L. L. Ferrás, M. L. Morgado, M. Rebelo, F. T. Pinho, A. M. Afonso
{"title":"The effect of asymmetric zeta potentials on the electro-osmotic flow of a generalized Phan–Thien–Tanner fluid","authors":"A. M. Ribau, L. L. Ferrás, M. L. Morgado, M. Rebelo, F. T. Pinho, A. M. Afonso","doi":"10.1007/s10665-024-10387-7","DOIUrl":null,"url":null,"abstract":"<p>Electrokinetic flows driven by electro-osmotic forces are especially relevant in micro and nano-devices, presenting specific applications in medicine, biochemistry, and miniaturized industrial processes. In this work, we integrate analytical solutions with numerical methodologies to explore the fluid dynamics of viscoelastic electro-osmotic/pressure-driven fluid flows (described by the generalized Phan–Thien–Tanner (gPTT) constitutive equation) in a microchannel under asymmetric zeta potential conditions. The constitutive equation incorporates the Mittag–Leffler function with two parameters (<span>\\(\\alpha \\)</span> and <span>\\(\\beta \\)</span>), which regulate the rate of destruction of junctions in a network model. We analyze the impact of the various model parameters on the velocity profile and observe that our newly proposed model provides a more comprehensive depiction of flow behavior compared to traditional models, rendering it suitable for modeling complex viscoelastic flows.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10387-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrokinetic flows driven by electro-osmotic forces are especially relevant in micro and nano-devices, presenting specific applications in medicine, biochemistry, and miniaturized industrial processes. In this work, we integrate analytical solutions with numerical methodologies to explore the fluid dynamics of viscoelastic electro-osmotic/pressure-driven fluid flows (described by the generalized Phan–Thien–Tanner (gPTT) constitutive equation) in a microchannel under asymmetric zeta potential conditions. The constitutive equation incorporates the Mittag–Leffler function with two parameters (\(\alpha \) and \(\beta \)), which regulate the rate of destruction of junctions in a network model. We analyze the impact of the various model parameters on the velocity profile and observe that our newly proposed model provides a more comprehensive depiction of flow behavior compared to traditional models, rendering it suitable for modeling complex viscoelastic flows.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.