A mathematical model for the nutrient distribution of a spheroidal avascular cancer tumour within an inhomogeneous environment

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Panayiotis Vafeas, Polycarpos K. Papadopoulos
{"title":"A mathematical model for the nutrient distribution of a spheroidal avascular cancer tumour within an inhomogeneous environment","authors":"Panayiotis Vafeas, Polycarpos K. Papadopoulos","doi":"10.1007/s10665-024-10389-5","DOIUrl":null,"url":null,"abstract":"<p>When a cancerous cell colony grows within a healthy environment, the entire structure can be modelled as a continuous two-phase fluid with five bounded compartments, governed by the laws of mass conservation, Fick’s diffusion law, and fluid mechanics principles. The interfaces of the five bounded compartments of the colony are defined by critical values of nutrient concentration. In studying the evolution of the exterior tumour boundary, nutrient concentration is the primary parameter. Although most existing research focuses on spherical tumours, significant implications for nutrient distribution emerge when spherical symmetry is abandoned, such as the occurrence of critical values at specific points rather than across the entire surface. In this work, we consider an oblate spheroidal tumour and investigate the effects of non-homogeneity in both nutrient supply and consumption rates. Our findings indicate that critical values are encountered within the interior of a thin layer, rather than at a single interface, although the interface is still included. We study the variation of nutrient concentration on the tumour’s interfaces through plots, highlighting the critical locations. The prolate spheroidal case can be derived via a simple transformation, and comparisons with similar spherical models are also discussed.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10389-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

When a cancerous cell colony grows within a healthy environment, the entire structure can be modelled as a continuous two-phase fluid with five bounded compartments, governed by the laws of mass conservation, Fick’s diffusion law, and fluid mechanics principles. The interfaces of the five bounded compartments of the colony are defined by critical values of nutrient concentration. In studying the evolution of the exterior tumour boundary, nutrient concentration is the primary parameter. Although most existing research focuses on spherical tumours, significant implications for nutrient distribution emerge when spherical symmetry is abandoned, such as the occurrence of critical values at specific points rather than across the entire surface. In this work, we consider an oblate spheroidal tumour and investigate the effects of non-homogeneity in both nutrient supply and consumption rates. Our findings indicate that critical values are encountered within the interior of a thin layer, rather than at a single interface, although the interface is still included. We study the variation of nutrient concentration on the tumour’s interfaces through plots, highlighting the critical locations. The prolate spheroidal case can be derived via a simple transformation, and comparisons with similar spherical models are also discussed.

Abstract Image

非均质环境中球形无血管癌症肿瘤营养分布的数学模型
当癌细胞集落在健康环境中生长时,整个结构可模拟为具有五个有界区的连续两相流体,受质量守恒定律、菲克扩散定律和流体力学原理的支配。菌落五个有界区的界面由营养浓度的临界值定义。在研究肿瘤外部边界的演变时,营养物质浓度是主要参数。虽然现有的研究大多集中在球形肿瘤上,但如果放弃球形对称性,营养物质的分布就会出现重大影响,例如临界值会出现在特定的点上,而不是整个表面。在这项工作中,我们考虑了扁球形肿瘤,并研究了营养供应和消耗率非均质性的影响。我们的研究结果表明,临界值是在薄层内部而不是在单个界面上出现的,尽管界面仍然包括在内。我们通过绘图研究了肿瘤界面上营养浓度的变化,突出了临界位置。通过简单的转换就可以得出类球面的情况,我们还讨论了与类似球面模型的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信