On the positive self-similar solutions of the boundary-layer wedge flow problem of a power-law fluid

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jamal El Amrani, Tarik Amtout, Mustapha Er-Riani, Aadil Lahrouz, Adel Settati
{"title":"On the positive self-similar solutions of the boundary-layer wedge flow problem of a power-law fluid","authors":"Jamal El Amrani, Tarik Amtout, Mustapha Er-Riani, Aadil Lahrouz, Adel Settati","doi":"10.1007/s10665-024-10394-8","DOIUrl":null,"url":null,"abstract":"<p>We first study the existence and uniqueness of a positive self-similar solution of the 2D boundary-layer equations of an incompressible viscous power-law fluid when the external flow is accelerating, and then we derive the bounds of the wall shear stress rate. For shear-thickening fluids, we show that the matching with the external flow occurs at a finite distance. Furthermore, we also investigate the asymptotic behaviour at infinity of positive solutions in the case of shear-thinning fluids.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10394-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We first study the existence and uniqueness of a positive self-similar solution of the 2D boundary-layer equations of an incompressible viscous power-law fluid when the external flow is accelerating, and then we derive the bounds of the wall shear stress rate. For shear-thickening fluids, we show that the matching with the external flow occurs at a finite distance. Furthermore, we also investigate the asymptotic behaviour at infinity of positive solutions in the case of shear-thinning fluids.

Abstract Image

论幂律流体边界层楔形流问题的正自相似解
我们首先研究了外部流加速时不可压缩粘性幂律流体二维边界层方程正自相似解的存在性和唯一性,然后推导了壁面剪应力率的边界。对于剪切增厚流体,我们证明与外部流的匹配发生在有限距离内。此外,我们还研究了剪切稀化流体正解在无穷远处的渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信