On the positive self-similar solutions of the boundary-layer wedge flow problem of a power-law fluid

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Jamal El Amrani, Tarik Amtout, Mustapha Er-Riani, Aadil Lahrouz, Adel Settati
{"title":"On the positive self-similar solutions of the boundary-layer wedge flow problem of a power-law fluid","authors":"Jamal El Amrani, Tarik Amtout, Mustapha Er-Riani, Aadil Lahrouz, Adel Settati","doi":"10.1007/s10665-024-10394-8","DOIUrl":null,"url":null,"abstract":"<p>We first study the existence and uniqueness of a positive self-similar solution of the 2D boundary-layer equations of an incompressible viscous power-law fluid when the external flow is accelerating, and then we derive the bounds of the wall shear stress rate. For shear-thickening fluids, we show that the matching with the external flow occurs at a finite distance. Furthermore, we also investigate the asymptotic behaviour at infinity of positive solutions in the case of shear-thinning fluids.</p>","PeriodicalId":50204,"journal":{"name":"Journal of Engineering Mathematics","volume":"19 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10394-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We first study the existence and uniqueness of a positive self-similar solution of the 2D boundary-layer equations of an incompressible viscous power-law fluid when the external flow is accelerating, and then we derive the bounds of the wall shear stress rate. For shear-thickening fluids, we show that the matching with the external flow occurs at a finite distance. Furthermore, we also investigate the asymptotic behaviour at infinity of positive solutions in the case of shear-thinning fluids.

Abstract Image

论幂律流体边界层楔形流问题的正自相似解
我们首先研究了外部流加速时不可压缩粘性幂律流体二维边界层方程正自相似解的存在性和唯一性,然后推导了壁面剪应力率的边界。对于剪切增厚流体,我们证明与外部流的匹配发生在有限距离内。此外,我们还研究了剪切稀化流体正解在无穷远处的渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Engineering Mathematics
Journal of Engineering Mathematics 工程技术-工程:综合
CiteScore
2.10
自引率
7.70%
发文量
44
审稿时长
6 months
期刊介绍: The aim of this journal is to promote the application of mathematics to problems from engineering and the applied sciences. It also aims to emphasize the intrinsic unity, through mathematics, of the fundamental problems of applied and engineering science. The scope of the journal includes the following: • Mathematics: Ordinary and partial differential equations, Integral equations, Asymptotics, Variational and functional−analytic methods, Numerical analysis, Computational methods. • Applied Fields: Continuum mechanics, Stability theory, Wave propagation, Diffusion, Heat and mass transfer, Free−boundary problems; Fluid mechanics: Aero− and hydrodynamics, Boundary layers, Shock waves, Fluid machinery, Fluid−structure interactions, Convection, Combustion, Acoustics, Multi−phase flows, Transition and turbulence, Creeping flow, Rheology, Porous−media flows, Ocean engineering, Atmospheric engineering, Non-Newtonian flows, Ship hydrodynamics; Solid mechanics: Elasticity, Classical mechanics, Nonlinear mechanics, Vibrations, Plates and shells, Fracture mechanics; Biomedical engineering, Geophysical engineering, Reaction−diffusion problems; and related areas. The Journal also publishes occasional invited ''Perspectives'' articles by distinguished researchers reviewing and bringing their authoritative overview to recent developments in topics of current interest in their area of expertise. Authors wishing to suggest topics for such articles should contact the Editors-in-Chief directly. Prospective authors are encouraged to consult recent issues of the journal in order to judge whether or not their manuscript is consistent with the style and content of published papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信