Nanoparticle uptake by a semi-permeable, spherical cell from an external planar diffusive field. II. Numerical study of temporal and spatial development validated using FEM

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sandeep Santhosh Kumar, Stanley J. Miklavcic
{"title":"Nanoparticle uptake by a semi-permeable, spherical cell from an external planar diffusive field. II. Numerical study of temporal and spatial development validated using FEM","authors":"Sandeep Santhosh Kumar, Stanley J. Miklavcic","doi":"10.1007/s10665-024-10395-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present a mathematical study of particle diffusion inside and outside a spherical biological cell that has been exposed on one side to a propagating planar diffusive front. The media inside and outside the spherical cell are differentiated by their respective diffusion constants. A closed form, large-time, asymptotic solution is derived by the combined means of Laplace transform, separation of variables, and asymptotic series development. The solution process is assisted by means of an effective far-field boundary condition, which is instrumental in resolving the conflict of planar and spherical geometries. The focus of the paper is on a numerical comparison to determine the accuracy of the asymptotic solution relative to a fully numerical solution obtained using the finite element method. The asymptotic solution is shown to be highly effective in capturing the dynamic behaviour of the system, both internal and external to the cell, under a range of diffusive conditions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10395-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a mathematical study of particle diffusion inside and outside a spherical biological cell that has been exposed on one side to a propagating planar diffusive front. The media inside and outside the spherical cell are differentiated by their respective diffusion constants. A closed form, large-time, asymptotic solution is derived by the combined means of Laplace transform, separation of variables, and asymptotic series development. The solution process is assisted by means of an effective far-field boundary condition, which is instrumental in resolving the conflict of planar and spherical geometries. The focus of the paper is on a numerical comparison to determine the accuracy of the asymptotic solution relative to a fully numerical solution obtained using the finite element method. The asymptotic solution is shown to be highly effective in capturing the dynamic behaviour of the system, both internal and external to the cell, under a range of diffusive conditions.

Abstract Image

半渗透球形细胞从外部平面扩散场吸收纳米粒子。II.利用有限元模型验证时空发展的数值研究
在本文中,我们对一侧暴露于平面扩散前沿的球形生物细胞内外的粒子扩散进行了数学研究。球形细胞内外的介质由各自的扩散常数区分。通过拉普拉斯变换、变量分离和渐近级数展开等综合方法,得出了闭合形式的大时间渐近解。求解过程借助有效的远场边界条件,有助于解决平面和球面几何形状的冲突。本文的重点是进行数值比较,以确定渐近解相对于使用有限元法获得的全数值解的准确性。结果表明,在一系列扩散条件下,渐近解法能够非常有效地捕捉系统的动态行为,包括细胞内部和外部的动态行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信