Khanh Nguyen Quoc, Van Tong, Cuong Dao, Tuyen Ngoc Le, Duc Tran
{"title":"Boosted regression for predicting CPU utilization in the cloud with periodicity","authors":"Khanh Nguyen Quoc, Van Tong, Cuong Dao, Tuyen Ngoc Le, Duc Tran","doi":"10.1007/s11227-024-06451-9","DOIUrl":null,"url":null,"abstract":"<p>Predicting CPU usage is crucial to cloud resource management. Precise CPU prediction, however, is a tough challenge due to the variable and dynamic nature of CPUs. In this paper, we introduce TrAdaBoost.WLP, a novel regression transfer boosting method that employs Long Short-Term Memory (LSTM) networks for CPU consumption prediction. Concretely, a dedicated Periodicity-aware LSTM (PA-LSTM) model is specifically developed to take into account the use of periodically repeated patterns in time series data while making predictions. To adjust for variations in CPU demands, multiple PA-LSTMs are trained and concatenated in TrAdaBoost.WLP using a boosting mechanism. TrAdaBoost.WLP and benchmarks have been thoroughly evaluated on two datasets: 160 Microsoft Azure VMs and 8 Google cluster traces. The experimental results show that TrAdaBoost.WLP can produce promising performance, improving by 32.4% and 59.3% in terms of mean squared error compared to the standard Probabilistic LSTM and ARIMA.</p>","PeriodicalId":501596,"journal":{"name":"The Journal of Supercomputing","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11227-024-06451-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting CPU usage is crucial to cloud resource management. Precise CPU prediction, however, is a tough challenge due to the variable and dynamic nature of CPUs. In this paper, we introduce TrAdaBoost.WLP, a novel regression transfer boosting method that employs Long Short-Term Memory (LSTM) networks for CPU consumption prediction. Concretely, a dedicated Periodicity-aware LSTM (PA-LSTM) model is specifically developed to take into account the use of periodically repeated patterns in time series data while making predictions. To adjust for variations in CPU demands, multiple PA-LSTMs are trained and concatenated in TrAdaBoost.WLP using a boosting mechanism. TrAdaBoost.WLP and benchmarks have been thoroughly evaluated on two datasets: 160 Microsoft Azure VMs and 8 Google cluster traces. The experimental results show that TrAdaBoost.WLP can produce promising performance, improving by 32.4% and 59.3% in terms of mean squared error compared to the standard Probabilistic LSTM and ARIMA.