A Practical Solver for Scalar Data Topological Simplification

Mohamed Kissi;Mathieu Pont;Joshua A. Levine;Julien Tierny
{"title":"A Practical Solver for Scalar Data Topological Simplification","authors":"Mohamed Kissi;Mathieu Pont;Joshua A. Levine;Julien Tierny","doi":"10.1109/TVCG.2024.3456345","DOIUrl":null,"url":null,"abstract":"This paper presents a practical approach for the optimization of topological simplification, a central pre-processing step for the analysis and visualization of scalar data. Given an input scalar field $f$ and a set of “signal” persistence pairs to maintain, our approaches produces an output field $g$ that is close to $f$ and which optimizes (i) the cancellation of “non-signal” pairs, while (ii) preserving the “signal” pairs. In contrast to pre-existing simplification algorithms, our approach is not restricted to persistence pairs involving extrema and can thus address a larger class of topological features, in particular saddle pairs in three-dimensional scalar data. Our approach leverages recent generic persistence optimization frameworks and extends them with tailored accelerations specific to the problem of topological simplification. Extensive experiments report substantial accelerations over these frameworks, thereby making topological simplification optimization practical for real-life datasets. Our approach enables a direct visualization and analysis of the topologically simplified data, e.g., via isosurfaces of simplified topology (fewer components and handles). We apply our approach to the extraction of prominent filament structures in three-dimensional data. Specifically, we show that our pre-simplification of the data leads to practical improvements over standard topological techniques for removing filament loops. We also show how our approach can be used to repair genus defects in surface processing. Finally, we provide a C++ implementation for reproducibility purposes.","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"31 1","pages":"97-107"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10675436/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a practical approach for the optimization of topological simplification, a central pre-processing step for the analysis and visualization of scalar data. Given an input scalar field $f$ and a set of “signal” persistence pairs to maintain, our approaches produces an output field $g$ that is close to $f$ and which optimizes (i) the cancellation of “non-signal” pairs, while (ii) preserving the “signal” pairs. In contrast to pre-existing simplification algorithms, our approach is not restricted to persistence pairs involving extrema and can thus address a larger class of topological features, in particular saddle pairs in three-dimensional scalar data. Our approach leverages recent generic persistence optimization frameworks and extends them with tailored accelerations specific to the problem of topological simplification. Extensive experiments report substantial accelerations over these frameworks, thereby making topological simplification optimization practical for real-life datasets. Our approach enables a direct visualization and analysis of the topologically simplified data, e.g., via isosurfaces of simplified topology (fewer components and handles). We apply our approach to the extraction of prominent filament structures in three-dimensional data. Specifically, we show that our pre-simplification of the data leads to practical improvements over standard topological techniques for removing filament loops. We also show how our approach can be used to repair genus defects in surface processing. Finally, we provide a C++ implementation for reproducibility purposes.
标量数据拓扑简化的实用求解器
本文提出了一种优化拓扑简化的实用方法,拓扑简化是标量数据分析和可视化的核心预处理步骤。给定一个输入标量场 $f$ 和一组需要保持的 "信号 "持续对,我们的方法会产生一个与 $f$ 接近的输出场 $g$,该场可优化 (i) 取消 "非信号 "对,同时 (ii) 保持 "信号 "对。与已有的简化算法相比,我们的方法并不局限于涉及极值的持久对,因此可以处理更多的拓扑特征,特别是三维标量数据中的鞍对。我们的方法利用了最新的通用持久性优化框架,并针对拓扑简化问题进行了量身定制的加速扩展。广泛的实验报告表明,与这些框架相比,拓扑简化优化的速度大大加快,从而使拓扑简化优化在现实生活数据集中变得切实可行。我们的方法可以实现拓扑简化数据的直接可视化和分析,例如,通过简化拓扑的等值面(更少的分量和手柄)。我们将这种方法应用于提取三维数据中突出的细丝结构。具体来说,我们展示了我们对数据的预简化,与标准拓扑技术相比,在去除丝状环方面有了实际的改进。我们还展示了我们的方法如何用于修复表面处理中的属缺陷。最后,我们提供了一个 C++ 实现,以实现可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信