{"title":"Power Law \n \n \n f\n (\n Q\n )\n \n $f(Q)$\n Cosmology with Bulk Viscous Fluid","authors":"Dheeraj Singh Rana, Raja Solanki, P. K. Sahoo","doi":"10.1002/andp.202400072","DOIUrl":null,"url":null,"abstract":"<p>In this work, a power law <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(Q)$</annotation>\n </semantics></math> model is explored, specifically, <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>α</mi>\n <msup>\n <mi>Q</mi>\n <mi>n</mi>\n </msup>\n </mrow>\n <annotation>$f(Q)= \\alpha Q^n$</annotation>\n </semantics></math>, along with viscous matter fluid having transport coefficient <span></span><math>\n <semantics>\n <mrow>\n <mi>ζ</mi>\n <mo>=</mo>\n <msub>\n <mi>ζ</mi>\n <mn>0</mn>\n </msub>\n <msqrt>\n <mi>Ω</mi>\n </msqrt>\n <mo>+</mo>\n <msub>\n <mi>ζ</mi>\n <mn>1</mn>\n </msub>\n <mi>Ω</mi>\n <mi>H</mi>\n </mrow>\n <annotation>$\\zeta = \\zeta _0 \\sqrt {\\Omega } + \\zeta _1 \\Omega H$</annotation>\n </semantics></math>. The corresponding analytical solution is derived and then confronted with recent cosmic data. The Markov Chain Monte Carlo (MCMC) sampling technique is utilized to estimate the mean value of arbitrary parameters, by incorporating Cosmic Chronometers and recently published Pantheon+Analysis samples. In addition, some cosmological parameters are reconstructed by resampling the chains obtained by emcee, incorporating 6000 samples. It is found that the matter-energy density depicts the expected positive behavior, whereas the effective pressure indicates the negative behavior that is leading the accelerating expansion, which is further predicted in the effective EoS parameter. Further, the asymptotic nature of the assumed model is investigated by invoking phase-space analysis. It is concluded that the assumed viscous <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>Q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$f(Q)$</annotation>\n </semantics></math> model successfully predicts an evolution of the universe from decelerated epoch to stable accelerated de-Sitter epoch.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"536 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400072","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a power law model is explored, specifically, , along with viscous matter fluid having transport coefficient . The corresponding analytical solution is derived and then confronted with recent cosmic data. The Markov Chain Monte Carlo (MCMC) sampling technique is utilized to estimate the mean value of arbitrary parameters, by incorporating Cosmic Chronometers and recently published Pantheon+Analysis samples. In addition, some cosmological parameters are reconstructed by resampling the chains obtained by emcee, incorporating 6000 samples. It is found that the matter-energy density depicts the expected positive behavior, whereas the effective pressure indicates the negative behavior that is leading the accelerating expansion, which is further predicted in the effective EoS parameter. Further, the asymptotic nature of the assumed model is investigated by invoking phase-space analysis. It is concluded that the assumed viscous model successfully predicts an evolution of the universe from decelerated epoch to stable accelerated de-Sitter epoch.
期刊介绍:
Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.