Andrés Aceña, Bruno Cardin Guntsche, Iván Gentile de Austria
{"title":"Revisiting Relativistic Electrically Charged Polytropic Spheres","authors":"Andrés Aceña, Bruno Cardin Guntsche, Iván Gentile de Austria","doi":"10.1002/andp.202400145","DOIUrl":null,"url":null,"abstract":"<p>The problem of the structure and physical properties of electrically charged static spherically symmetric solutions of the Einstein-Maxwell system of equations is revisited, where the matter model is a polytropic gas. A relativistic polytrope equation of state (EOS) is considered and the electric charge density is assumed to be proportional to the rest mass density. Families of solutions corresponding to various sets of parameters are constructed and analyzed their stability and compliance with the causality requirement, emphasizing the possibility of obtaining black hole mimickers. Concretely, this study wants to test how much electric charge a given object can hold and how compact it can be. It is concluded that there is a microscopic bound on the charge density to rest mass density ratio coincident with the macroscopic bound regarding the extremal Reissner-Nordström (ERN) black hole. The macroscopic charge to mass ratio for the object can exceed the corresponding microscopic ratio if the object is non-extremal. Crucially, the only way to construct a black hole mimicker is by taking a subtle limit in which an electrically counterpoised dust (ECD) solution is attained.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"536 12","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400145","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The problem of the structure and physical properties of electrically charged static spherically symmetric solutions of the Einstein-Maxwell system of equations is revisited, where the matter model is a polytropic gas. A relativistic polytrope equation of state (EOS) is considered and the electric charge density is assumed to be proportional to the rest mass density. Families of solutions corresponding to various sets of parameters are constructed and analyzed their stability and compliance with the causality requirement, emphasizing the possibility of obtaining black hole mimickers. Concretely, this study wants to test how much electric charge a given object can hold and how compact it can be. It is concluded that there is a microscopic bound on the charge density to rest mass density ratio coincident with the macroscopic bound regarding the extremal Reissner-Nordström (ERN) black hole. The macroscopic charge to mass ratio for the object can exceed the corresponding microscopic ratio if the object is non-extremal. Crucially, the only way to construct a black hole mimicker is by taking a subtle limit in which an electrically counterpoised dust (ECD) solution is attained.
期刊介绍:
Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.