2D Gauss Diffraction Gratings

IF 2.2 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
D. S. Citrin
{"title":"2D Gauss Diffraction Gratings","authors":"D. S. Citrin","doi":"10.1002/andp.202400187","DOIUrl":null,"url":null,"abstract":"<p>2D diffraction gratings based on Gauss lattices are a class of nonperiodic lattice in which the sites are located at <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mrow>\n <msub>\n <mi>j</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>j</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n </msub>\n <mo>=</mo>\n <msubsup>\n <mi>j</mi>\n <mn>1</mn>\n <mi>n</mi>\n </msubsup>\n <mi>d</mi>\n <mover>\n <mi>x</mi>\n <mo>̂</mo>\n </mover>\n <mo>+</mo>\n <msubsup>\n <mi>j</mi>\n <mn>2</mn>\n <mi>n</mi>\n </msubsup>\n <mi>d</mi>\n <mover>\n <mi>y</mi>\n <mo>̂</mo>\n </mover>\n </mrow>\n <annotation>${\\bf R}_{j_1,j_2}=j_1^nd\\hat{\\bf x} + j_2^nd\\hat{\\bf y}$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>j</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>j</mi>\n <mn>2</mn>\n </msub>\n <mspace></mspace>\n <mo>∈</mo>\n <mspace></mspace>\n <mrow>\n <mo>{</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation>$j_1,j_2\\!\\in \\! \\lbrace \\ldots, -1,0,1,\\ldots \\rbrace$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mspace></mspace>\n <mo>∈</mo>\n <mspace></mspace>\n <mo>{</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mn>3</mn>\n <mo>,</mo>\n <mn>4</mn>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>}</mo>\n </mrow>\n <annotation>$n\\! \\in \\! \\lbrace 2,3,4, \\ldots \\rbrace$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mover>\n <mi>x</mi>\n <mo>̂</mo>\n </mover>\n </mrow>\n <annotation>$d\\hat{\\bf x}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mover>\n <mi>y</mi>\n <mo>̂</mo>\n </mover>\n </mrow>\n <annotation>$d\\hat{\\bf y}$</annotation>\n </semantics></math> orthogonal primitive vectors in the plane, and <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math> the lattice constant. Gauss lattices are treated for various orders <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>, and discuss applications for gratings separable in the <span></span><math>\n <semantics>\n <mi>x</mi>\n <annotation>$x$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>y</mi>\n <annotation>$y$</annotation>\n </semantics></math> directions. These gratings, while geometrically very simple, produce complex pseudorandom diffraction patterns, though they exhibit rotational invariance and strong correlations along the <span></span><math>\n <semantics>\n <mi>x</mi>\n <annotation>$x$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>y</mi>\n <annotation>$y$</annotation>\n </semantics></math> directions. Then how to generalize the approach is discussed to attain nonseparable gratings where such features are suppressed. The result is an intensity distribution like that of diffuse light, the effect originating in the breaking of the hidden translational invariance of the Gauss lattice.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"536 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.202400187","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400187","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

2D diffraction gratings based on Gauss lattices are a class of nonperiodic lattice in which the sites are located at R j 1 , j 2 = j 1 n d x ̂ + j 2 n d y ̂ ${\bf R}_{j_1,j_2}=j_1^nd\hat{\bf x} + j_2^nd\hat{\bf y}$ with j 1 , j 2 { , 1 , 0 , 1 , } $j_1,j_2\!\in \! \lbrace \ldots, -1,0,1,\ldots \rbrace$ , n { 2 , 3 , 4 , } $n\! \in \! \lbrace 2,3,4, \ldots \rbrace$ , d x ̂ $d\hat{\bf x}$ and d y ̂ $d\hat{\bf y}$ orthogonal primitive vectors in the plane, and d $d$ the lattice constant. Gauss lattices are treated for various orders n $n$ , and discuss applications for gratings separable in the x $x$ and y $y$ directions. These gratings, while geometrically very simple, produce complex pseudorandom diffraction patterns, though they exhibit rotational invariance and strong correlations along the x $x$ and y $y$ directions. Then how to generalize the approach is discussed to attain nonseparable gratings where such features are suppressed. The result is an intensity distribution like that of diffuse light, the effect originating in the breaking of the hidden translational invariance of the Gauss lattice.

Abstract Image

Abstract Image

二维高斯衍射光栅
基于高斯晶格的二维衍射光栅是一类非周期性晶格,其中的点位于平面上的 、 、 和正交基元向量,以及晶格常数。高斯点阵的各种阶数为 ,并讨论了在 和 方向上可分离光栅的应用。这些光栅虽然在几何上非常简单,却能产生复杂的伪随机衍射图样,尽管它们沿 和 方向表现出旋转不变性和强相关性。然后讨论了如何推广这种方法,以实现抑制此类特征的不可分离光栅。其结果是产生类似漫射光的强度分布,这种效果源于高斯晶格隐藏的平移不变性被打破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annalen der Physik
Annalen der Physik 物理-物理:综合
CiteScore
4.50
自引率
8.30%
发文量
202
审稿时长
3 months
期刊介绍: Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信