Lipid metabolism reprogramming in endometrial cancer: biological functions and therapeutic implications

IF 8.2 2区 生物学 Q1 CELL BIOLOGY
Xiangyu Wang, Yinuo Li, Xin Hou, Jingfang Li, Xiangyi Ma
{"title":"Lipid metabolism reprogramming in endometrial cancer: biological functions and therapeutic implications","authors":"Xiangyu Wang, Yinuo Li, Xin Hou, Jingfang Li, Xiangyi Ma","doi":"10.1186/s12964-024-01792-7","DOIUrl":null,"url":null,"abstract":"Endometrial cancer is one of the major gynecological cancers, with increasing incidence and mortality in the past decades. Emerging preclinical and clinical data have indicated its close association with obesity and dyslipidemia. Metabolism reprogramming has been considered as the hallmark of cancer, to satisfy the extensive need of nutrients and energy for survival and growth. Particularly, lipid metabolism reprogramming has aroused the researchers’ interest in the field of cancer, including tumorigenesis, invasiveness, metastasis, therapeutic resistance and immunity modulation, etc. But the roles of lipid metabolism reprogramming in endometrial cancer have not been fully understood. This review has summarized how lipid metabolism reprogramming induces oncogenesis and progression of endometrial cancer, including the biological functions of aberrant lipid metabolism pathway and altered transcription regulation of lipid metabolism pathway. Besides, we proposed novel therapeutic strategies of targeting lipid metabolism pathway and concentrated on its potential of sensitizing immunotherapy and hormonal therapy, to further optimize the existing treatment modalities of patients with advanced/metastatic endometrial cancer. Moreover, we expect that targeting lipid metabolism plus hormone therapy may block the endometrial malignant transformation and enrich the preventative approaches of endometrial cancer. Lipid metabolism reprogramming plays an important role in tumor initiation and cancer progression of endometrial cancer. Targeting the core enzymes and transcriptional factors of lipid metabolism pathway alone or in combination with immunotherapy/hormone treatment is expected to decrease the tumor burden and provide promising treatment opportunity for patients with advanced/metastatic endometrial cancer.","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-01792-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Endometrial cancer is one of the major gynecological cancers, with increasing incidence and mortality in the past decades. Emerging preclinical and clinical data have indicated its close association with obesity and dyslipidemia. Metabolism reprogramming has been considered as the hallmark of cancer, to satisfy the extensive need of nutrients and energy for survival and growth. Particularly, lipid metabolism reprogramming has aroused the researchers’ interest in the field of cancer, including tumorigenesis, invasiveness, metastasis, therapeutic resistance and immunity modulation, etc. But the roles of lipid metabolism reprogramming in endometrial cancer have not been fully understood. This review has summarized how lipid metabolism reprogramming induces oncogenesis and progression of endometrial cancer, including the biological functions of aberrant lipid metabolism pathway and altered transcription regulation of lipid metabolism pathway. Besides, we proposed novel therapeutic strategies of targeting lipid metabolism pathway and concentrated on its potential of sensitizing immunotherapy and hormonal therapy, to further optimize the existing treatment modalities of patients with advanced/metastatic endometrial cancer. Moreover, we expect that targeting lipid metabolism plus hormone therapy may block the endometrial malignant transformation and enrich the preventative approaches of endometrial cancer. Lipid metabolism reprogramming plays an important role in tumor initiation and cancer progression of endometrial cancer. Targeting the core enzymes and transcriptional factors of lipid metabolism pathway alone or in combination with immunotherapy/hormone treatment is expected to decrease the tumor burden and provide promising treatment opportunity for patients with advanced/metastatic endometrial cancer.
子宫内膜癌中的脂质代谢重编程:生物功能和治疗意义
子宫内膜癌是主要的妇科癌症之一,在过去几十年中发病率和死亡率不断上升。新出现的临床前和临床数据表明,子宫内膜癌与肥胖和血脂异常密切相关。新陈代谢重编程被认为是癌症的标志,以满足生存和生长对营养和能量的大量需求。尤其是脂质代谢重编程在癌症领域引起了研究人员的兴趣,包括肿瘤发生、侵袭性、转移、抗药性和免疫调节等。但脂质代谢重编程在子宫内膜癌中的作用尚未完全明了。本综述总结了脂质代谢重编程如何诱导子宫内膜癌的发生和发展,包括异常脂质代谢通路的生物学功能和脂质代谢通路转录调控的改变。此外,我们还提出了靶向脂质代谢通路的新型治疗策略,并集中探讨了其增敏免疫疗法和激素疗法的潜力,以进一步优化晚期/转移性子宫内膜癌患者的现有治疗模式。此外,我们还期待以脂质代谢为靶点的激素治疗可以阻断子宫内膜的恶性转化,丰富子宫内膜癌的预防方法。脂质代谢重编程在子宫内膜癌的肿瘤发生和癌症进展中起着重要作用。单独靶向脂质代谢通路的核心酶和转录因子,或与免疫疗法/激素疗法相结合,有望减轻肿瘤负担,为晚期/转移性子宫内膜癌患者提供有希望的治疗机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
180
期刊介绍: Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior. Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信