On the Gromov hyperbolicity of the minimal metric

IF 1 3区 数学 Q1 MATHEMATICS
Matteo Fiacchi
{"title":"On the Gromov hyperbolicity of the minimal metric","authors":"Matteo Fiacchi","doi":"10.1007/s00209-024-03581-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the hyperbolicity in the sense of Gromov of domains in <span>\\(\\mathbb {R}^d\\)</span> <span>\\((d\\ge 3)\\)</span> with respect to the minimal metric introduced by Forstnerič and Kalaj (Anal PDE 17(3):981–1003, 2024). In particular, we prove that every bounded strongly minimally convex domain is Gromov hyperbolic and its Gromov compactification is equivalent to its Euclidean closure. Moreover, we prove that the boundary of a Gromov hyperbolic convex domain does not contain non-trivial conformal harmonic disks. Finally, we study the relation between the minimal metric and the Hilbert metric in convex domains.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"60 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03581-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the hyperbolicity in the sense of Gromov of domains in \(\mathbb {R}^d\) \((d\ge 3)\) with respect to the minimal metric introduced by Forstnerič and Kalaj (Anal PDE 17(3):981–1003, 2024). In particular, we prove that every bounded strongly minimally convex domain is Gromov hyperbolic and its Gromov compactification is equivalent to its Euclidean closure. Moreover, we prove that the boundary of a Gromov hyperbolic convex domain does not contain non-trivial conformal harmonic disks. Finally, we study the relation between the minimal metric and the Hilbert metric in convex domains.

论最小公设的格罗莫夫双曲性
在本文中,我们研究了由 Forstnerič 和 Kalaj(Anal PDE 17(3):981-1003, 2024)引入的最小度量的 \(\mathbb {R}^d\) \((d\ge 3)\)中域的 Gromov 意义上的双曲性。特别是,我们证明了每个有界强最小凸域都是格罗莫夫双曲域,并且其格罗莫夫压缩等价于其欧几里得闭包。此外,我们还证明了格罗莫夫双曲凸域的边界不包含非三维共形谐波盘。最后,我们研究了凸域中最小度量与希尔伯特度量之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信