Clifford quadratic complete intersections

IF 1 3区 数学 Q1 MATHEMATICS
Haigang Hu, Izuru Mori
{"title":"Clifford quadratic complete intersections","authors":"Haigang Hu, Izuru Mori","doi":"10.1007/s00209-024-03575-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we define and study Clifford quadratic complete intersections. After showing some properties of Clifford quantum polynomial algebras, we show that there is a natural one-to-one correspondence between Clifford quadratic complete intersections and commutative quadratic complete intersections. We also provide a calculation method for the point varieties of Clifford quadratic complete intersections. As an application, we give a classification of Clifford quadratic complete intersections in three variables in terms of their characteristic varieties.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"18 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03575-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we define and study Clifford quadratic complete intersections. After showing some properties of Clifford quantum polynomial algebras, we show that there is a natural one-to-one correspondence between Clifford quadratic complete intersections and commutative quadratic complete intersections. We also provide a calculation method for the point varieties of Clifford quadratic complete intersections. As an application, we give a classification of Clifford quadratic complete intersections in three variables in terms of their characteristic varieties.

克利福德二次完全交叉
在本文中,我们定义并研究了克利福德二次完全交集。在展示了克利福德量子多项式代数的一些性质之后,我们证明了克利福德二次完全交集与交换二次完全交集之间存在天然的一一对应关系。我们还提供了克利福德二次完全交点品种的计算方法。作为应用,我们给出了三变量克利福德二次完全相交的特征品种分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信