Some Results on Neural Network Stability, Consistency, and Convergence: Insights into Non-IID Data, High-Dimensional Settings, and Physics-Informed Neural Networks

Ronald Katende, Henry Kasumba, Godwin Kakuba, John M. Mango
{"title":"Some Results on Neural Network Stability, Consistency, and Convergence: Insights into Non-IID Data, High-Dimensional Settings, and Physics-Informed Neural Networks","authors":"Ronald Katende, Henry Kasumba, Godwin Kakuba, John M. Mango","doi":"arxiv-2409.05030","DOIUrl":null,"url":null,"abstract":"This paper addresses critical challenges in machine learning, particularly\nthe stability, consistency, and convergence of neural networks under non-IID\ndata, distribution shifts, and high-dimensional settings. We provide new\ntheoretical results on uniform stability for neural networks with dynamic\nlearning rates in non-convex settings. Further, we establish consistency bounds\nfor federated learning models in non-Euclidean spaces, accounting for\ndistribution shifts and curvature effects. For Physics-Informed Neural Networks\n(PINNs), we derive stability, consistency, and convergence guarantees for\nsolving Partial Differential Equations (PDEs) in noisy environments. These\nresults fill significant gaps in understanding model behavior in complex,\nnon-ideal conditions, paving the way for more robust and reliable machine\nlearning applications.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses critical challenges in machine learning, particularly the stability, consistency, and convergence of neural networks under non-IID data, distribution shifts, and high-dimensional settings. We provide new theoretical results on uniform stability for neural networks with dynamic learning rates in non-convex settings. Further, we establish consistency bounds for federated learning models in non-Euclidean spaces, accounting for distribution shifts and curvature effects. For Physics-Informed Neural Networks (PINNs), we derive stability, consistency, and convergence guarantees for solving Partial Differential Equations (PDEs) in noisy environments. These results fill significant gaps in understanding model behavior in complex, non-ideal conditions, paving the way for more robust and reliable machine learning applications.
关于神经网络稳定性、一致性和收敛性的一些结果:对非 IID 数据、高维设置和物理信息神经网络的启示
本文探讨了机器学习中的关键挑战,特别是神经网络在非 IID 数据、分布偏移和高维设置下的稳定性、一致性和收敛性。我们提供了在非凸环境下具有动态学习率的神经网络均匀稳定性的新理论结果。此外,我们还为非欧几里得空间中的联合学习模型建立了一致性边界,并考虑了分布偏移和曲率效应。对于物理信息神经网络(PINNs),我们推导出了在噪声环境中求解偏微分方程(PDEs)的稳定性、一致性和收敛性保证。这些成果填补了在理解复杂、非理想条件下模型行为方面的重大空白,为更稳健、更可靠的机器学习应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信