Asymptotic Preserving Linearly Implicit Additive IMEX-RK Finite Volume Schemes for Low Mach Number Isentropic Euler Equations

Saurav Samantaray
{"title":"Asymptotic Preserving Linearly Implicit Additive IMEX-RK Finite Volume Schemes for Low Mach Number Isentropic Euler Equations","authors":"Saurav Samantaray","doi":"arxiv-2409.05854","DOIUrl":null,"url":null,"abstract":"We consider the compressible Euler equations of gas dynamics with isentropic\nequation of state. In the low Mach number regime i.e. when the fluid velocity\nis very very small in comparison to the sound speed in the medium, the solution\nof the compressible system converges to the solution of its incompressible\ncounter part. Standard numerical schemes fail to respect this transition\nproperty and hence are plagued with inaccuracies as well as instabilities. In\nthis paper we introduce an extra flux term to the momentum flux. This extra\nterm is brought to fore by looking at the incompressibility constraints of the\nasymptotic limit system. This extra flux term enables us to get a suitable flux\nsplitting, so that an additive IMEX-RK scheme could be applied. Using an\nelliptic reformulation the scheme boils down to just solving a linear elliptic\nproblem for the density and then explicit updates for the momentum. The IMEX\nschemes developed are shown to be formally asymptotically consistent with the\nlow Mach number limit of the Euler equations. A second order space time fully\ndiscrete scheme is obtained in the finite volume framework using a combination\nof Rusanov flux for the explicit part and simple central differences for the\nimplicit part. Numerical results are reported which elucidate the theoretical\nassertions regarding the scheme and its robustness.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"389 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the compressible Euler equations of gas dynamics with isentropic equation of state. In the low Mach number regime i.e. when the fluid velocity is very very small in comparison to the sound speed in the medium, the solution of the compressible system converges to the solution of its incompressible counter part. Standard numerical schemes fail to respect this transition property and hence are plagued with inaccuracies as well as instabilities. In this paper we introduce an extra flux term to the momentum flux. This extra term is brought to fore by looking at the incompressibility constraints of the asymptotic limit system. This extra flux term enables us to get a suitable flux splitting, so that an additive IMEX-RK scheme could be applied. Using an elliptic reformulation the scheme boils down to just solving a linear elliptic problem for the density and then explicit updates for the momentum. The IMEX schemes developed are shown to be formally asymptotically consistent with the low Mach number limit of the Euler equations. A second order space time fully discrete scheme is obtained in the finite volume framework using a combination of Rusanov flux for the explicit part and simple central differences for the implicit part. Numerical results are reported which elucidate the theoretical assertions regarding the scheme and its robustness.
低马赫数等熵欧拉方程的渐近保线性隐含加法 IMEX-RK 有限体积方案
我们考虑的是具有等熵状态方程的可压缩气体动力学欧拉方程。在低马赫数情况下,即流体速度与介质中的声速相比非常非常小的时候,可压缩系统的解会收敛到其不可压缩部分的解。标准数值方案未能尊重这一过渡特性,因此存在误差和不稳定性。在本文中,我们为动量通量引入了一个额外的通量项。通过观察渐近极限系统的不可压缩性约束,我们发现了这个额外的通量项。这个额外的通量项使我们能够得到一个合适的通量拆分,从而可以应用加法 IMEX-RK 方案。利用椭圆重述,该方案只需求解密度的线性椭圆问题,然后对动量进行显式更新。研究表明,所开发的 IMEX 方案在形式上与欧拉方程的低马赫数极限渐近一致。在有限体积框架内,使用 Rusanov 通量对显式部分和简单中心差对隐式部分进行组合,获得了二阶时空全离散方案。报告的数值结果阐明了该方案的理论推断及其稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信