Dynamic Error-Bounded Hierarchical Matrices in Neural Network Compression

John Mango, Ronald Katende
{"title":"Dynamic Error-Bounded Hierarchical Matrices in Neural Network Compression","authors":"John Mango, Ronald Katende","doi":"arxiv-2409.07028","DOIUrl":null,"url":null,"abstract":"This paper presents an innovative framework that integrates hierarchical\nmatrix (H-matrix) compression techniques into the structure and training of\nPhysics-Informed Neural Networks (PINNs). By leveraging the low-rank properties\nof matrix sub-blocks, the proposed dynamic, error-bounded H-matrix compression\nmethod significantly reduces computational complexity and storage requirements\nwithout compromising accuracy. This approach is rigorously compared to\ntraditional compression techniques, such as Singular Value Decomposition (SVD),\npruning, and quantization, demonstrating superior performance, particularly in\nmaintaining the Neural Tangent Kernel (NTK) properties critical for the\nstability and convergence of neural networks. The findings reveal that H-matrix\ncompression not only enhances training efficiency but also ensures the\nscalability and robustness of PINNs for complex, large-scale applications in\nphysics-based modeling. This work offers a substantial contribution to the\noptimization of deep learning models, paving the way for more efficient and\npractical implementations of PINNs in real-world scenarios.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an innovative framework that integrates hierarchical matrix (H-matrix) compression techniques into the structure and training of Physics-Informed Neural Networks (PINNs). By leveraging the low-rank properties of matrix sub-blocks, the proposed dynamic, error-bounded H-matrix compression method significantly reduces computational complexity and storage requirements without compromising accuracy. This approach is rigorously compared to traditional compression techniques, such as Singular Value Decomposition (SVD), pruning, and quantization, demonstrating superior performance, particularly in maintaining the Neural Tangent Kernel (NTK) properties critical for the stability and convergence of neural networks. The findings reveal that H-matrix compression not only enhances training efficiency but also ensures the scalability and robustness of PINNs for complex, large-scale applications in physics-based modeling. This work offers a substantial contribution to the optimization of deep learning models, paving the way for more efficient and practical implementations of PINNs in real-world scenarios.
神经网络压缩中的动态误差约束层次矩阵
本文提出了一种创新框架,将分层矩阵(H-matrix)压缩技术集成到物理信息神经网络(PINNs)的结构和训练中。通过利用矩阵子块的低秩特性,所提出的动态、有误差限制的 H 矩阵压缩方法大大降低了计算复杂度和存储要求,同时不影响准确性。该方法与奇异值分解(SVD)、剪枝和量化等传统压缩技术进行了严格比较,显示出卓越的性能,尤其是在保持对神经网络的稳定性和收敛性至关重要的神经切分核(NTK)特性方面。研究结果表明,H-matrix 压缩不仅能提高训练效率,还能确保 PINNs 的可扩展性和鲁棒性,适用于基于物理学建模的复杂、大规模应用。这项工作为深度学习模型的优化做出了重大贡献,为 PINN 在现实世界场景中更高效、更实用的实现铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信