Edge-Wise Graph-Instructed Neural Networks

Francesco Della Santa, Antonio Mastropietro, Sandra Pieraccini, Francesco Vaccarino
{"title":"Edge-Wise Graph-Instructed Neural Networks","authors":"Francesco Della Santa, Antonio Mastropietro, Sandra Pieraccini, Francesco Vaccarino","doi":"arxiv-2409.08023","DOIUrl":null,"url":null,"abstract":"The problem of multi-task regression over graph nodes has been recently\napproached through Graph-Instructed Neural Network (GINN), which is a promising\narchitecture belonging to the subset of message-passing graph neural networks.\nIn this work, we discuss the limitations of the Graph-Instructed (GI) layer,\nand we formalize a novel edge-wise GI (EWGI) layer. We discuss the advantages\nof the EWGI layer and we provide numerical evidence that EWGINNs perform better\nthan GINNs over graph-structured input data with chaotic connectivity, like the\nones inferred from the Erdos-R\\'enyi graph.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of multi-task regression over graph nodes has been recently approached through Graph-Instructed Neural Network (GINN), which is a promising architecture belonging to the subset of message-passing graph neural networks. In this work, we discuss the limitations of the Graph-Instructed (GI) layer, and we formalize a novel edge-wise GI (EWGI) layer. We discuss the advantages of the EWGI layer and we provide numerical evidence that EWGINNs perform better than GINNs over graph-structured input data with chaotic connectivity, like the ones inferred from the Erdos-R\'enyi graph.
边缘智图引导神经网络
在这项工作中,我们讨论了图引导(GI)层的局限性,并正式提出了一种新颖的边缘引导 GI(EWGI)层。我们讨论了 EWGI 层的优势,并提供了数值证据,证明 EWGINN 在处理具有混沌连接性的图结构输入数据(如从 Erdos-R\'enyi 图推断出的数据)时比 GINN 表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信