Approximation of the Hilbert Transform on the unit circle

Luisa Fermo, Valerio Loi
{"title":"Approximation of the Hilbert Transform on the unit circle","authors":"Luisa Fermo, Valerio Loi","doi":"arxiv-2409.07810","DOIUrl":null,"url":null,"abstract":"The paper deals with the numerical approximation of the Hilbert transform on\nthe unit circle using Szeg\\\"o and anti-Szeg\\\"o quadrature formulas. These\nschemes exhibit maximum precision with oppositely signed errors and allow for\nimproved accuracy through their averaged results. Their computation involves a\nfree parameter associated with the corresponding para-orthogonal polynomials.\nHere, it is suitably chosen to construct a Szeg\\\"o and anti-Szeg\\\"o formula\nwhose nodes are strategically distanced from the singularity of the Hilbert\nkernel. Numerical experiments demonstrate the accuracy of the proposed method.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper deals with the numerical approximation of the Hilbert transform on the unit circle using Szeg\"o and anti-Szeg\"o quadrature formulas. These schemes exhibit maximum precision with oppositely signed errors and allow for improved accuracy through their averaged results. Their computation involves a free parameter associated with the corresponding para-orthogonal polynomials. Here, it is suitably chosen to construct a Szeg\"o and anti-Szeg\"o formula whose nodes are strategically distanced from the singularity of the Hilbert kernel. Numerical experiments demonstrate the accuracy of the proposed method.
单位圆上希尔伯特变换的近似值
本文使用 Szeg\"o 正交公式和反 Szeg\"o 正交公式对单位圆上的希尔伯特变换进行数值逼近。这两个公式以相反符号误差表现出最高精度,并通过其平均结果提高了精度。它们的计算涉及到一个与相应的准正交多项式相关的自由参数。在这里,它被适当地选择来构造一个Szeg\"o和anti-Szeg\"o公式,其节点与希尔伯特内核的奇点有策略性的距离。数值实验证明了所提方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信