Conservation genetics of barbel species (Teleostei, Cyprinidae) facing hybridization and introgression along an elevational gradient in protected areas of northern Italy

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Claudio Ferrari, Federica Piccoli, Andrea Voccia, Pietro Maria Rontani, Stefano Leonardi, Alessia Ardenghi, Francesco Nonnis Marzano, Laura Filonzi
{"title":"Conservation genetics of barbel species (Teleostei, Cyprinidae) facing hybridization and introgression along an elevational gradient in protected areas of northern Italy","authors":"Claudio Ferrari, Federica Piccoli, Andrea Voccia, Pietro Maria Rontani, Stefano Leonardi, Alessia Ardenghi, Francesco Nonnis Marzano, Laura Filonzi","doi":"10.1111/zsc.12691","DOIUrl":null,"url":null,"abstract":"The European endemic barbels represent important bioindicators of river quality and are nowadays threatened by changing environmental conditions and hybridization with the invasive alien <jats:italic>Barbus barbus</jats:italic>. It is therefore fundamental to investigate interactions among species and adaptability to climate changes in protected areas of Northern Apennines. An investigation was carried out considering 248 barbel samples that were analysed for <jats:italic>Cytb</jats:italic> mitochondrial DNA and 192 at 10 microsatellite loci, to delineate the distribution and population structure of the two native species as well as the impact of invasive <jats:italic>B. barbus</jats:italic> inside 15 sites of the Natura 2000 network. The complex distribution of the native barbel species was highlighted, together with a significant genetic structure emerging in different populations. Only one site revealed a “pure” population of <jats:italic>B. caninus</jats:italic> while the other ones showed a high level of hybridization between the different barbel species. For the <jats:italic>B. plebejus</jats:italic> two “genetically pure” populations were found in the hill‐mountain sector, while the hybridization level resulted in increasing in the lowest altitudinal stretch of watercourses with a consistent contribution driven by <jats:italic>B. barbus</jats:italic>. We herein present the first evidence of <jats:italic>B. barbus</jats:italic> introgression along an altitudinal gradient, carried from the lowland water course to mountain stretches driven by <jats:italic>B. plebejus</jats:italic> migration. <jats:italic>B. plebejus</jats:italic> is the species that can act as vicariant organism able to transfer the <jats:italic>B. barbus</jats:italic> genome from the plain habitats into <jats:italic>B. caninus</jats:italic> genome of the higher altitude waterstreams, as a consequence of habitat shifts due to climate changes and anthropogenic acitivities.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/zsc.12691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The European endemic barbels represent important bioindicators of river quality and are nowadays threatened by changing environmental conditions and hybridization with the invasive alien Barbus barbus. It is therefore fundamental to investigate interactions among species and adaptability to climate changes in protected areas of Northern Apennines. An investigation was carried out considering 248 barbel samples that were analysed for Cytb mitochondrial DNA and 192 at 10 microsatellite loci, to delineate the distribution and population structure of the two native species as well as the impact of invasive B. barbus inside 15 sites of the Natura 2000 network. The complex distribution of the native barbel species was highlighted, together with a significant genetic structure emerging in different populations. Only one site revealed a “pure” population of B. caninus while the other ones showed a high level of hybridization between the different barbel species. For the B. plebejus two “genetically pure” populations were found in the hill‐mountain sector, while the hybridization level resulted in increasing in the lowest altitudinal stretch of watercourses with a consistent contribution driven by B. barbus. We herein present the first evidence of B. barbus introgression along an altitudinal gradient, carried from the lowland water course to mountain stretches driven by B. plebejus migration. B. plebejus is the species that can act as vicariant organism able to transfer the B. barbus genome from the plain habitats into B. caninus genome of the higher altitude waterstreams, as a consequence of habitat shifts due to climate changes and anthropogenic acitivities.
意大利北部保护区内鲃鱼物种(梭鱼科、鲤科)面临杂交和引入的保护遗传学研究
欧洲特有的鲃鱼是河流水质的重要生物指标,如今正受到不断变化的环境条件以及与外来入侵鲃鱼杂交的威胁。因此,研究亚平宁半岛北部保护区内物种间的相互作用和对气候变化的适应性至关重要。我们对 248 个鲃鱼样本进行了线粒体 DNA Cytb 分析,并对 192 个样本进行了 10 个微卫星位点分析,以确定这两个本地物种的分布和种群结构,以及外来入侵鲃鱼对自然保护区 2000 网络 15 个地点的影响。结果表明,本地鲃物种的分布十分复杂,不同种群的遗传结构也各不相同。只有一个地点发现了鲃鱼的 "纯种 "种群,而其他地点则显示出不同鲃鱼物种之间的高度杂交。在山丘区发现了两个 "基因纯合 "的褶鲈种群,而在海拔最低的河道中,杂交水平不断提高,褶鲈种群的贡献率一直很高。我们在此首次提出了B. barbus在海拔梯度上的引种证据,在B. plebejus迁移的推动下,B. barbus从低地水道向山区迁移。B.plebejus是一种能够将B.barbus基因组从平原栖息地转移到高海拔水流中的B.canus基因组的替代生物,这是气候变化和人为活动造成的栖息地转移的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信