David W. Roberts, Anne Marie Api, Aynur Aptula, Isabelle Lee, Holger Moustakas
{"title":"Updating Reaction Mechanistic Domains for Skin Sensitization: 1. Nucleophilic Skin Sensitizers","authors":"David W. Roberts, Anne Marie Api, Aynur Aptula, Isabelle Lee, Holger Moustakas","doi":"10.1021/acs.chemrestox.4c00207","DOIUrl":null,"url":null,"abstract":"It has long been recognized that skin sensitizers either are electrophilic or can be activated to electrophilic species. Several nonanimal assays for skin sensitization are based on this premise. In the course of a project to update dermal sensitization thresholds (DST), we found a substantial number of sensitizers, with no electrophilic or pro-electrophilic alerts, that could be simply explained in terms of the sensitizer acting as a nucleophile. In some cases, the nucleophilic center is a sulfur or phosphorus atom, while in others, it is an aromatic carbon atom. For carbon-centered nucleophiles, a quantitative mechanistic model based on a combination of Hammett σ<sup>+</sup> and logP values has been derived. This has been applied to rationalize several groups of known sensitizers with no electrophilic or pro-electrophilic alerts, including anacardic acids and cardols, which are known human sensitizers associated with, inter alia, cashew nut oil, mango, and <i>Ginkgo biloba</i>. The possibility of nucleophilic sensitization needs to be considered when evaluating new chemicals for skin sensitization potential and potency by nonanimal assays, particularly those based on the premise that skin sensitization is dependent upon reactions of electrophiles with skin protein-based nucleophiles.","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":"32 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.4c00207","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
It has long been recognized that skin sensitizers either are electrophilic or can be activated to electrophilic species. Several nonanimal assays for skin sensitization are based on this premise. In the course of a project to update dermal sensitization thresholds (DST), we found a substantial number of sensitizers, with no electrophilic or pro-electrophilic alerts, that could be simply explained in terms of the sensitizer acting as a nucleophile. In some cases, the nucleophilic center is a sulfur or phosphorus atom, while in others, it is an aromatic carbon atom. For carbon-centered nucleophiles, a quantitative mechanistic model based on a combination of Hammett σ+ and logP values has been derived. This has been applied to rationalize several groups of known sensitizers with no electrophilic or pro-electrophilic alerts, including anacardic acids and cardols, which are known human sensitizers associated with, inter alia, cashew nut oil, mango, and Ginkgo biloba. The possibility of nucleophilic sensitization needs to be considered when evaluating new chemicals for skin sensitization potential and potency by nonanimal assays, particularly those based on the premise that skin sensitization is dependent upon reactions of electrophiles with skin protein-based nucleophiles.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.