Shengyu Cai, Huizheng Zhu, Lingling Chen, Congcong Yu, Liyuan Su, Kaihua Chen, Yousheng Li
{"title":"Berberine Inhibits KLF4 Promoter Methylation and Ferroptosis to Ameliorate Diabetic Nephropathy in Mice","authors":"Shengyu Cai, Huizheng Zhu, Lingling Chen, Congcong Yu, Liyuan Su, Kaihua Chen, Yousheng Li","doi":"10.1021/acs.chemrestox.4c00263","DOIUrl":null,"url":null,"abstract":"Inflammation, oxidative stress, fibrosis, and ferroptosis play important roles in diabetic nephropathy development. Krüppel-like factor 4 (KLF4) is a transcriptional factor, which regulates multiple cell processes and is involved in diabetic nephropathy. Berberine has various biological activities, including anti-inflammation, antioxidative stress, and antiferroptosis. Berberine has been shown to inhibit diabetic nephropathy, but whether it involves KLF4 and ferroptosis remains unknown. We established a diabetic nephropathy mice model and administered berberine to the mice. The kidney function, renal structure and fibrosis, expression of KLF4 and DNA methylation enzymes, DNA methylation of the KLF4 promoter, mitochondria structure, and expression of oxidative stress and ferroptosis markers were analyzed. Berberine rescued kidney function and renal structure and prevented renal fibrosis in diabetic nephropathy mice. Berberine suppressed the expression of DNMT1 and DNMT2 and upregulated KLF4 expression by preventing KLF4 promoter methylation. Berberine inhibited the expression of oxidative stress and ferroptosis markers, maintained mitochondria structure, and prevented ferroptosis. Berberine ameliorates diabetic nephropathy by inhibiting Klf4 promoter methylation and ferroptosis.","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":"19 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.4c00263","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Inflammation, oxidative stress, fibrosis, and ferroptosis play important roles in diabetic nephropathy development. Krüppel-like factor 4 (KLF4) is a transcriptional factor, which regulates multiple cell processes and is involved in diabetic nephropathy. Berberine has various biological activities, including anti-inflammation, antioxidative stress, and antiferroptosis. Berberine has been shown to inhibit diabetic nephropathy, but whether it involves KLF4 and ferroptosis remains unknown. We established a diabetic nephropathy mice model and administered berberine to the mice. The kidney function, renal structure and fibrosis, expression of KLF4 and DNA methylation enzymes, DNA methylation of the KLF4 promoter, mitochondria structure, and expression of oxidative stress and ferroptosis markers were analyzed. Berberine rescued kidney function and renal structure and prevented renal fibrosis in diabetic nephropathy mice. Berberine suppressed the expression of DNMT1 and DNMT2 and upregulated KLF4 expression by preventing KLF4 promoter methylation. Berberine inhibited the expression of oxidative stress and ferroptosis markers, maintained mitochondria structure, and prevented ferroptosis. Berberine ameliorates diabetic nephropathy by inhibiting Klf4 promoter methylation and ferroptosis.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.