Ghous Ali, Nimra Lateef, Muhammad Usman Zia, Tehseen Abbas
{"title":"A Novel Cognitive Rough Approach for Severity Analysis of Autistic Children Using Spherical Fuzzy Bipolar Soft Sets","authors":"Ghous Ali, Nimra Lateef, Muhammad Usman Zia, Tehseen Abbas","doi":"10.1007/s12559-024-10349-2","DOIUrl":null,"url":null,"abstract":"<p>Autism spectrum disorders (ASDs) pose complex challenges, characterized by atypical behaviors, sensory sensitivities, and difficulties in social interaction. Despite extensive research, their exact causes remain elusive, indicating a multifactorial interplay of genetic, environmental, and neurological factors. This complexity calls for innovative approaches to ASD understanding and management. Motivated by the need to address the nuanced and uncertain nature of ASD-related data, in this study, we introduce a novel hybrid model called rough spherical fuzzy bipolar soft sets (RSFBSSs) by integrating rough sets, spherical fuzzy sets, and bipolar soft sets, which accommodates imprecision inherent in clinical assessments. We build upon foundational concepts of RSFBSS theory, developing a comprehensive algorithm for uncertain multiple attribute decision-making (MADM). Leveraging this framework, we aim to assess ASD symptom severity in pediatric populations, considering diverse contributing factors to ASD pathogenesis. The RSFBSSs offer advantages over existing methodologies, providing a robust framework for handling complex ASD data. The algorithmic framework facilitates accurate and individualized assessments of ASD symptomatology. To validate our model’s efficacy, we conduct a comparative analysis with preexisting hybrid models, employing quantitative metrics and qualitative evaluations. Through this comprehensive evaluation, we demonstrate the superior performance and versatility of RSFBSSs, offering promising avenues for advancing ASD management.</p>","PeriodicalId":51243,"journal":{"name":"Cognitive Computation","volume":"59 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12559-024-10349-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Autism spectrum disorders (ASDs) pose complex challenges, characterized by atypical behaviors, sensory sensitivities, and difficulties in social interaction. Despite extensive research, their exact causes remain elusive, indicating a multifactorial interplay of genetic, environmental, and neurological factors. This complexity calls for innovative approaches to ASD understanding and management. Motivated by the need to address the nuanced and uncertain nature of ASD-related data, in this study, we introduce a novel hybrid model called rough spherical fuzzy bipolar soft sets (RSFBSSs) by integrating rough sets, spherical fuzzy sets, and bipolar soft sets, which accommodates imprecision inherent in clinical assessments. We build upon foundational concepts of RSFBSS theory, developing a comprehensive algorithm for uncertain multiple attribute decision-making (MADM). Leveraging this framework, we aim to assess ASD symptom severity in pediatric populations, considering diverse contributing factors to ASD pathogenesis. The RSFBSSs offer advantages over existing methodologies, providing a robust framework for handling complex ASD data. The algorithmic framework facilitates accurate and individualized assessments of ASD symptomatology. To validate our model’s efficacy, we conduct a comparative analysis with preexisting hybrid models, employing quantitative metrics and qualitative evaluations. Through this comprehensive evaluation, we demonstrate the superior performance and versatility of RSFBSSs, offering promising avenues for advancing ASD management.
期刊介绍:
Cognitive Computation is an international, peer-reviewed, interdisciplinary journal that publishes cutting-edge articles describing original basic and applied work involving biologically-inspired computational accounts of all aspects of natural and artificial cognitive systems. It provides a new platform for the dissemination of research, current practices and future trends in the emerging discipline of cognitive computation that bridges the gap between life sciences, social sciences, engineering, physical and mathematical sciences, and humanities.