Jari Miina, Marius Hauglin, Aksel Granhus, Anne Linn Hykkerud, Inger Martinussen
{"title":"Modelling and mapping the abundance of lingonberry (Vaccinium vitis-idaea L.) in Norway","authors":"Jari Miina, Marius Hauglin, Aksel Granhus, Anne Linn Hykkerud, Inger Martinussen","doi":"10.1016/j.gecco.2024.e03195","DOIUrl":null,"url":null,"abstract":"Lingonberry ( L.) grows in a range of nature types in the boreal zone, and understanding factors affecting the abundance of the plant, as well as mapping its spatial distribution, is important. The abundance of the species can be an indicator of ecosystem changes, and lingonberry can also be a source for commercial utilisation of berry resources. Using country-wide data from 6404 field plots of the Norwegian national forest inventory (NFI), we modelled the relationship between lingonberry cover and airborne laser scanning (ALS) and satellite metrics and bioclimatic variables describing the forest structure, terrain, soil properties and climate using a generalised mixed-effects model with a quasipoisson distribution. The validation carried out with an independent set of 2124 NFI plots indicated no obvious bias in predictions. The most important predictors were found to be interactions between dominant tree species, stand basal area and latitude, as well as the reflectance in the near-infrared band from Sentinel-2 satellite imagery, the dominant height based on the ALS variable and the long-term mean summer (June–August) temperature. The results provide an indicator of the effects of global warming, as well as the possibility of giving forest management prescriptions that favour lingonberry and locating the most abundant lingonberry sites in Norwegian forests.","PeriodicalId":54264,"journal":{"name":"Global Ecology and Conservation","volume":"55 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.gecco.2024.e03195","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Lingonberry ( L.) grows in a range of nature types in the boreal zone, and understanding factors affecting the abundance of the plant, as well as mapping its spatial distribution, is important. The abundance of the species can be an indicator of ecosystem changes, and lingonberry can also be a source for commercial utilisation of berry resources. Using country-wide data from 6404 field plots of the Norwegian national forest inventory (NFI), we modelled the relationship between lingonberry cover and airborne laser scanning (ALS) and satellite metrics and bioclimatic variables describing the forest structure, terrain, soil properties and climate using a generalised mixed-effects model with a quasipoisson distribution. The validation carried out with an independent set of 2124 NFI plots indicated no obvious bias in predictions. The most important predictors were found to be interactions between dominant tree species, stand basal area and latitude, as well as the reflectance in the near-infrared band from Sentinel-2 satellite imagery, the dominant height based on the ALS variable and the long-term mean summer (June–August) temperature. The results provide an indicator of the effects of global warming, as well as the possibility of giving forest management prescriptions that favour lingonberry and locating the most abundant lingonberry sites in Norwegian forests.
期刊介绍:
Global Ecology and Conservation is a peer-reviewed, open-access journal covering all sub-disciplines of ecological and conservation science: from theory to practice, from molecules to ecosystems, from regional to global. The fields covered include: organismal, population, community, and ecosystem ecology; physiological, evolutionary, and behavioral ecology; and conservation science.