Performance of Open-Source LLMs in Challenging Radiological Cases – A Benchmark Study on 4,049 Eurorad Case Reports

Su Hwan Kim, Severin Schramm, Lisa C. Adams, Rickmer Braren, Keno K. Bressem, Matthias Keicher, Claus Zimmer, Dennis M. Hedderich, Benedikt Wiestler
{"title":"Performance of Open-Source LLMs in Challenging Radiological Cases – A Benchmark Study on 4,049 Eurorad Case Reports","authors":"Su Hwan Kim, Severin Schramm, Lisa C. Adams, Rickmer Braren, Keno K. Bressem, Matthias Keicher, Claus Zimmer, Dennis M. Hedderich, Benedikt Wiestler","doi":"10.1101/2024.09.04.24313026","DOIUrl":null,"url":null,"abstract":"<strong>Background</strong> Recent advancements in large language models (LLMs) have created new ways to support radiological diagnostics. While both open-source and proprietary LLMs can address privacy concerns through local or cloud deployment, open-source models provide advantages in continuity of access, independence from commercial update cycles, and potentially lower costs.","PeriodicalId":501358,"journal":{"name":"medRxiv - Radiology and Imaging","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Radiology and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.04.24313026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background Recent advancements in large language models (LLMs) have created new ways to support radiological diagnostics. While both open-source and proprietary LLMs can address privacy concerns through local or cloud deployment, open-source models provide advantages in continuity of access, independence from commercial update cycles, and potentially lower costs.
开放源码 LLM 在具有挑战性的放射病例中的表现--对 4,049 份 Eurorad 病例报告的基准研究
背景 大型语言模型(LLM)的最新进展为放射诊断提供了新的支持方式。虽然开源和专有 LLM 都能通过本地或云部署解决隐私问题,但开源模型在访问的连续性、独立于商业更新周期以及潜在的低成本方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信