Darya Egorova, Bjorn Olsson, Tatyana Kir'yanova, Elena Plotnikova
{"title":"An Assessment of the Degradation Potential and Genomic Insights Towards Hydroxylated Biphenyls by Rhodococcus opacus Strain KT112-7","authors":"Darya Egorova, Bjorn Olsson, Tatyana Kir'yanova, Elena Plotnikova","doi":"10.2174/0113892029319746240812051356","DOIUrl":null,"url":null,"abstract":"Background: Hydroxylated biphenyls are currently recognized as secondary pollutants that are hazardous to animals and humans. Bacterial degradation is the most effective method for the degradation of hydroxylated biphenyls. Several strains capable of degrading polychlorinated biphenyls have been described, which also degrade hydroxylated biphenyls. Objectives: 1) To study the biodegradative properties of the Rhodococcus opacus strain KT112-7 towards mono-hydroxylated biphenyls. 2) To analyze the genome of the Rhodococcus opacus strain KT112-7. 3) To identify the genetic basis for the unique biodegradative potential of the Rhodococcus opacus strain KT112-7. Methods: A genome analysis of the strain KT112-7 was conducted based on whole-genome sequencing using various programs and databases (Velvet, CONTIGuator, RAST, KEGG) for annotation and identification of protein-coding sequences. The strain KT112-7 was cultivated in a K1 mineral medium supplemented with mono-hydroxy biphenyls or mono-hydroxybenzoic acids as the carbon source. For the growth test mono-hydroxybiphenyls or mono-hydroxybenzoic acids were dosed at concentrations of 0.5 g/L and 1.0 g/L correspondently, and the bacterial growth was monitored by the optical density. For the biodegradative activity test, mono-hydroxybiphenyls were dosed at a concentration of 0.1 g/L in vials, inoculated with late exponential phase bacteria previously acclimated on biphenyl. Compound analysis was performed using GC-MS, HPLC, and spectrophotometry. Results: It was found that the genome of strain KT112-7 consists of a chromosome and 2 plasmids. Biphenyl degradation genes (bph genes) were identified on plasmid PRHWK1 and the chromosome, as well as hydroxybenzoic acid degradation genes on the chromosome. The strain KT112-7 was shown to degrade mono-hydroxylated biphenyls to basal metabolic compounds of the cell, with the highest destructive activity observed towards 3- and 4-hydroxylated biphenyls (98%). Conclusion: The Rhodococcus opacus strain KT112-7 is characterized by genetic systems that contribute to its high biodegradative potential towards mono-hydroxylated biphenyls and their metabolites. Thus, the strain KT112-7 is promising for use in hydroxybiphenyl degradation technologies.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0113892029319746240812051356","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Hydroxylated biphenyls are currently recognized as secondary pollutants that are hazardous to animals and humans. Bacterial degradation is the most effective method for the degradation of hydroxylated biphenyls. Several strains capable of degrading polychlorinated biphenyls have been described, which also degrade hydroxylated biphenyls. Objectives: 1) To study the biodegradative properties of the Rhodococcus opacus strain KT112-7 towards mono-hydroxylated biphenyls. 2) To analyze the genome of the Rhodococcus opacus strain KT112-7. 3) To identify the genetic basis for the unique biodegradative potential of the Rhodococcus opacus strain KT112-7. Methods: A genome analysis of the strain KT112-7 was conducted based on whole-genome sequencing using various programs and databases (Velvet, CONTIGuator, RAST, KEGG) for annotation and identification of protein-coding sequences. The strain KT112-7 was cultivated in a K1 mineral medium supplemented with mono-hydroxy biphenyls or mono-hydroxybenzoic acids as the carbon source. For the growth test mono-hydroxybiphenyls or mono-hydroxybenzoic acids were dosed at concentrations of 0.5 g/L and 1.0 g/L correspondently, and the bacterial growth was monitored by the optical density. For the biodegradative activity test, mono-hydroxybiphenyls were dosed at a concentration of 0.1 g/L in vials, inoculated with late exponential phase bacteria previously acclimated on biphenyl. Compound analysis was performed using GC-MS, HPLC, and spectrophotometry. Results: It was found that the genome of strain KT112-7 consists of a chromosome and 2 plasmids. Biphenyl degradation genes (bph genes) were identified on plasmid PRHWK1 and the chromosome, as well as hydroxybenzoic acid degradation genes on the chromosome. The strain KT112-7 was shown to degrade mono-hydroxylated biphenyls to basal metabolic compounds of the cell, with the highest destructive activity observed towards 3- and 4-hydroxylated biphenyls (98%). Conclusion: The Rhodococcus opacus strain KT112-7 is characterized by genetic systems that contribute to its high biodegradative potential towards mono-hydroxylated biphenyls and their metabolites. Thus, the strain KT112-7 is promising for use in hydroxybiphenyl degradation technologies.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.