J Yang, E D Fredrickson, Q Hu, M Podestà, J W Berkery, L Bardóczi, R J La Haye, O Sauter, M Austin, E Strait and C Chrystal
{"title":"Measurement of small island characteristics using high resolution ECE and CER at DIII-D","authors":"J Yang, E D Fredrickson, Q Hu, M Podestà, J W Berkery, L Bardóczi, R J La Haye, O Sauter, M Austin, E Strait and C Chrystal","doi":"10.1088/1361-6587/ad75b8","DOIUrl":null,"url":null,"abstract":"The measurements using the high resolution electron cyclotron emission radiometry and the charge exchange and recombination spectroscopy are processed using analytic formulas to allow for the detection of islands as small as 1.9 cm. In contrast to large, saturated magnetic islands which are relatively well understood to be governed by the loss of bootstrap current inside the island, small islands are less well understood due to the difficulty of their accurate measurement in tokamaks. Here, ‘small’ islands are islands comparable in size to the ion banana width, which can be as small as 0.8 cm at DIII-D. The new measurement methods allow for the detection of small island widths when the predicted increase of mode frequency to match the Doppler shifted ion diamagnetic frequency is observed. Therefore, for the first time, the mode frequency increase can be unambiguously associated to the acceleration of the magnetic island propagation. Such association allows for a further development and validation of the much-debated theory of ion polarization currents, which is thought to govern the small island growth.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics and Controlled Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6587/ad75b8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
The measurements using the high resolution electron cyclotron emission radiometry and the charge exchange and recombination spectroscopy are processed using analytic formulas to allow for the detection of islands as small as 1.9 cm. In contrast to large, saturated magnetic islands which are relatively well understood to be governed by the loss of bootstrap current inside the island, small islands are less well understood due to the difficulty of their accurate measurement in tokamaks. Here, ‘small’ islands are islands comparable in size to the ion banana width, which can be as small as 0.8 cm at DIII-D. The new measurement methods allow for the detection of small island widths when the predicted increase of mode frequency to match the Doppler shifted ion diamagnetic frequency is observed. Therefore, for the first time, the mode frequency increase can be unambiguously associated to the acceleration of the magnetic island propagation. Such association allows for a further development and validation of the much-debated theory of ion polarization currents, which is thought to govern the small island growth.
期刊介绍:
Plasma Physics and Controlled Fusion covers all aspects of the physics of hot, highly ionised plasmas. This includes results of current experimental and theoretical research on all aspects of the physics of high-temperature plasmas and of controlled nuclear fusion, including the basic phenomena in highly-ionised gases in the laboratory, in the ionosphere and in space, in magnetic-confinement and inertial-confinement fusion as well as related diagnostic methods.
Papers with a technological emphasis, for example in such topics as plasma control, fusion technology and diagnostics, are welcomed when the plasma physics is an integral part of the paper or when the technology is unique to plasma applications or new to the field of plasma physics. Papers on dusty plasma physics are welcome when there is a clear relevance to fusion.