{"title":"Exponential time difference methods with spatial exponential approximations for solving boundary layer problems","authors":"Liyong Zhu, Xinwei Wang, Tianzheng Lu","doi":"10.1002/num.23145","DOIUrl":null,"url":null,"abstract":"In this work, an efficient and stable exponential time difference method is presented for solving boundary layer problems. By combining exponential time difference schemes with spatial direct discontinuous Galerkin discretization based on exponential boundary layer approximations, the proposed algorithm not only may admit large time step sizes but also could provide good spatial approximations even if on rather coarse spatial grids in the boundary layer. Some energy stabilities of the numerical scheme are rigorously derived. Numerical examples illustrate the accuracy, stability and efficiency of the algorithm.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"21 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23145","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, an efficient and stable exponential time difference method is presented for solving boundary layer problems. By combining exponential time difference schemes with spatial direct discontinuous Galerkin discretization based on exponential boundary layer approximations, the proposed algorithm not only may admit large time step sizes but also could provide good spatial approximations even if on rather coarse spatial grids in the boundary layer. Some energy stabilities of the numerical scheme are rigorously derived. Numerical examples illustrate the accuracy, stability and efficiency of the algorithm.
期刊介绍:
An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.