Extraction and purification, pharmacological action, synthesis and product development of salidroside: a review

IF 2.6 4区 医学 Q3 CHEMISTRY, MEDICINAL
Yaxiao Liu, Linwei Dan, Jiamei Tang, Zitong Yin, Longzhu Yang, Dongdong Zhang, Xiaomei Song, Wei Wang, Yuze Li
{"title":"Extraction and purification, pharmacological action, synthesis and product development of salidroside: a review","authors":"Yaxiao Liu,&nbsp;Linwei Dan,&nbsp;Jiamei Tang,&nbsp;Zitong Yin,&nbsp;Longzhu Yang,&nbsp;Dongdong Zhang,&nbsp;Xiaomei Song,&nbsp;Wei Wang,&nbsp;Yuze Li","doi":"10.1007/s00044-024-03306-z","DOIUrl":null,"url":null,"abstract":"<div><p>Salidroside (Sal), a natural phenolic glycoside ubiquitous across all species of the <i>Rhodiola</i> genus, has garnered considerable attention in contemporary pharmacological research. Its multifaceted pharmacological profile encompasses anti-tumor, anti-hypoxia, anti-inflammatory, and anti-atherosclerotic properties, among others. Notably, its pharmacological repertoire extends to safeguarding against hypoxic injury, particularly in high-altitude environments. Furthermore, Sal serves as a key indicator for assessing the quality of <i>Rhodiola</i>. It is capable of exerting biological activity on the nervous system, cardiovascular system and internal organs of the body through various pathways and mechanisms, and thus has the potential to be therapeutically effective in the treatment of diseases associated with these systems. In order to optimize the effectiveness and safety of Sal’s application and ensure the isolation of highly pure and stable monomer components, its extraction and purification processes were refined. In addition, it is important to protect wild plant resources and meet market demand, as well as to explore Sal and its synthetic products, in consideration of its anti-altitude anoxia biological characteristics. Therefore, this paper reviewed the source, extraction and purification, pharmacological effects, biological activity, synthesis and product application of Sal, updated and deepened the understanding of Sal, and provided theoretical basis for the further research of Sal.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"33 10","pages":"1804 - 1828"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00044-024-03306-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Salidroside (Sal), a natural phenolic glycoside ubiquitous across all species of the Rhodiola genus, has garnered considerable attention in contemporary pharmacological research. Its multifaceted pharmacological profile encompasses anti-tumor, anti-hypoxia, anti-inflammatory, and anti-atherosclerotic properties, among others. Notably, its pharmacological repertoire extends to safeguarding against hypoxic injury, particularly in high-altitude environments. Furthermore, Sal serves as a key indicator for assessing the quality of Rhodiola. It is capable of exerting biological activity on the nervous system, cardiovascular system and internal organs of the body through various pathways and mechanisms, and thus has the potential to be therapeutically effective in the treatment of diseases associated with these systems. In order to optimize the effectiveness and safety of Sal’s application and ensure the isolation of highly pure and stable monomer components, its extraction and purification processes were refined. In addition, it is important to protect wild plant resources and meet market demand, as well as to explore Sal and its synthetic products, in consideration of its anti-altitude anoxia biological characteristics. Therefore, this paper reviewed the source, extraction and purification, pharmacological effects, biological activity, synthesis and product application of Sal, updated and deepened the understanding of Sal, and provided theoretical basis for the further research of Sal.

Abstract Image

水杨梅甙的提取和纯化、药理作用、合成和产品开发:综述
红景天苷(Salidroside,Sal)是一种天然酚苷,在红景天属的所有物种中无处不在,在当代药理学研究中备受关注。其多方面的药理特征包括抗肿瘤、抗缺氧、抗炎和抗动脉粥样硬化等特性。值得注意的是,它的药理作用还包括防止缺氧损伤,尤其是在高海拔环境中。此外,Sal 还是评估红景天质量的关键指标。它能够通过各种途径和机制对人体的神经系统、心血管系统和内脏器官发挥生物活性,因此在治疗与这些系统有关的疾病方面具有潜在的治疗效果。为了优化萨尔应用的有效性和安全性,并确保分离出高纯度和稳定的单体成分,对其提取和纯化过程进行了改进。此外,考虑到萨尔抗高原缺氧的生物学特性,保护野生植物资源、满足市场需求以及探索萨尔及其合成产品也非常重要。因此,本文综述了盐巴的来源、提取纯化、药理作用、生物活性、合成及产品应用,更新和加深了对盐巴的认识,为盐巴的进一步研究提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medicinal Chemistry Research
Medicinal Chemistry Research 医学-医药化学
CiteScore
4.70
自引率
3.80%
发文量
162
审稿时长
5.0 months
期刊介绍: Medicinal Chemistry Research (MCRE) publishes papers on a wide range of topics, favoring research with significant, new, and up-to-date information. Although the journal has a demanding peer review process, MCRE still boasts rapid publication, due in part, to the length of the submissions. The journal publishes significant research on various topics, many of which emphasize the structure-activity relationships of molecular biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信