Sober $L$-convex spaces and $L$-join-semilattices

Guojun Wu, Wei Yao
{"title":"Sober $L$-convex spaces and $L$-join-semilattices","authors":"Guojun Wu, Wei Yao","doi":"arxiv-2408.08520","DOIUrl":null,"url":null,"abstract":"With a complete residuated lattice $L$ as the truth value table, we extend\nthe definition of sobriety of classical convex spaces to the framework of\n$L$-convex spaces. We provide a specific construction for the sobrification of\nan $L$-convex space, demonstrating that the full subcategory of sober\n$L$-convex spaces is reflective in the category of $L$-convex spaces with\nconvexity-preserving mappings. Additionally, we introduce the concept of Scott\n$L$-convex structures on $L$-ordered sets. As an application of this type of\nsobriety, we obtain a characterization for the $L$-join-semilattice completion\nof an $L$-ordered set: an $L$-ordered set $Q$ is an $L$-join-semilattice\ncompletion of an $L$-ordered set $P$ if and only if the Scott $L$-convex space\n$(Q, \\sigma^{\\ast}(Q))$ is a sobrification of the Scott $L$-convex space $(P,\n\\sigma^{\\ast}(P))$.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.08520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With a complete residuated lattice $L$ as the truth value table, we extend the definition of sobriety of classical convex spaces to the framework of $L$-convex spaces. We provide a specific construction for the sobrification of an $L$-convex space, demonstrating that the full subcategory of sober $L$-convex spaces is reflective in the category of $L$-convex spaces with convexity-preserving mappings. Additionally, we introduce the concept of Scott $L$-convex structures on $L$-ordered sets. As an application of this type of sobriety, we obtain a characterization for the $L$-join-semilattice completion of an $L$-ordered set: an $L$-ordered set $Q$ is an $L$-join-semilattice completion of an $L$-ordered set $P$ if and only if the Scott $L$-convex space $(Q, \sigma^{\ast}(Q))$ is a sobrification of the Scott $L$-convex space $(P, \sigma^{\ast}(P))$.
清醒的$L$凸空间和$L$连接半网格
以完整残差格$L$为真值表,我们将经典凸空间的清醒定义扩展到$L$-凸空间的框架。我们为$L$-凸空间的清醒化提供了一个具体的构造,证明了清醒$L$-凸空间的完整子类反映在具有凸性保留映射的$L$-凸空间类别中。此外,我们还引入了$L$有序集上的斯科特$L$凸结构的概念。作为这种对称的应用,我们得到了$L$有序集的$L$连接-半格补全的特征:当且仅当斯科特$L$凸空间$(Q, \sigma^{/ast}(Q))$ 是斯科特$L$凸空间$(P,\sigma^{/ast}(P))$ 的简化时,$L$有序集合$Q$ 是$L$有序集合$P$ 的$L$连接-半网格完成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信