Generic Compacta from Relations between Finite Graphs: Theory Building and Examples

Adam Bartoš, Tristan Bice, Alessandro Vignati
{"title":"Generic Compacta from Relations between Finite Graphs: Theory Building and Examples","authors":"Adam Bartoš, Tristan Bice, Alessandro Vignati","doi":"arxiv-2408.15228","DOIUrl":null,"url":null,"abstract":"In recent work, the authors developed a simple method of constructing\ntopological spaces from certain well-behaved partially ordered sets -- those\ncoming from sequences of relations between finite sets. This method associates\na given poset with its spectrum, which is a compact T_1 topological space. In this paper, we focus on the case where such finite sets have a graph\nstructure and the relations belong to a given graph category. We relate\ntopological properties of the spectrum to combinatorial properties of the graph\ncategories involved. We then utilise this to exhibit elementary combinatorial\nconstructions of well-known continua as Fra\\\"iss\\'e limits of finite graphs in\ncategories with relational morphisms.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent work, the authors developed a simple method of constructing topological spaces from certain well-behaved partially ordered sets -- those coming from sequences of relations between finite sets. This method associates a given poset with its spectrum, which is a compact T_1 topological space. In this paper, we focus on the case where such finite sets have a graph structure and the relations belong to a given graph category. We relate topological properties of the spectrum to combinatorial properties of the graph categories involved. We then utilise this to exhibit elementary combinatorial constructions of well-known continua as Fra\"iss\'e limits of finite graphs in categories with relational morphisms.
从有限图之间的关系看通用契约:理论构建与实例
在最近的工作中,作者们开发了一种简单的方法,从某些乖巧的部分有序集--那些来自有限集之间关系序列的部分有序集--构建拓扑空间。这种方法将给定的正集与它的谱联系起来,而它的谱是一个紧凑的 T_1 拓扑空间。在本文中,我们将重点讨论这种有限集具有图结构且关系属于给定图范畴的情况。我们将谱的拓扑性质与相关图类的组合性质联系起来。然后,我们利用这一点展示了著名连续集的基本组合构造,即具有关系态的有限图类的Fra("iss\e "limit)极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信