On Baire property of spaces of compact-valued measurable functions

Alexander V. Osipov
{"title":"On Baire property of spaces of compact-valued measurable functions","authors":"Alexander V. Osipov","doi":"arxiv-2409.02913","DOIUrl":null,"url":null,"abstract":"A topological space $X$ is Baire if the Baire Category Theorem holds for $X$,\ni.e., the intersection of any sequence of open dense subsets of $X$ is dense in\n$X$. One of the interesting problems in the theory of functional spaces is the\ncharacterization of the Baire property of a functional space through the\ntopological property of the support of functions. In the paper this problem is solved for the space $M(X, K)$ of all measurable\ncompact-valued ($K$-valued) functions defined on a measurable space\n$(X,\\Sigma)$ with the topology of pointwise convergence. It is proved that\n$M(X, K)$ is Baire for any metrizable compact space $K$.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A topological space $X$ is Baire if the Baire Category Theorem holds for $X$, i.e., the intersection of any sequence of open dense subsets of $X$ is dense in $X$. One of the interesting problems in the theory of functional spaces is the characterization of the Baire property of a functional space through the topological property of the support of functions. In the paper this problem is solved for the space $M(X, K)$ of all measurable compact-valued ($K$-valued) functions defined on a measurable space $(X,\Sigma)$ with the topology of pointwise convergence. It is proved that $M(X, K)$ is Baire for any metrizable compact space $K$.
论紧凑有值可测函数空间的 Baire 特性
如果百里范畴定理对 $X$ 成立,即 $X$ 的任何开放致密子集序列的交集在 $X$ 中致密,则拓扑空间 $X$ 是百里的。函数空间理论中一个有趣的问题是通过函数支持的拓扑性质来描述函数空间的 Baire 性质。本文解决了定义在可测空间$(X,\Sigma)$上的所有可测紧凑值($K$值)函数的空间$M(X,K)$的这一问题。证明了$M(X, K)$ 对于任何可元紧凑空间 $K$ 都是 Baire 的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信