YOLOv8 Enables Automated Dragonfly Species Classification Using Wing Images

Suyeon Kim
{"title":"YOLOv8 Enables Automated Dragonfly Species Classification Using Wing Images","authors":"Suyeon Kim","doi":"10.1101/2024.09.01.610694","DOIUrl":null,"url":null,"abstract":"This study investigates the digitization of insect collections and the application of deep learning models to improve this process. During a one-hour filming session, 141 images of dragonfly specimens from the Cornell University Insect Collection were captured and preprocessed using five distinct methods: (1) adding box annotations around the wings, (2) adding polygon annotations to outline the forewings and hindwings, (3) removing vein system images, (4) retaining only the wing outline images, and (5) grouping by automatically measured wing size and classifying species within those groups. By comparing YOLOv8 models trained on datasets with these different preprocessing methods, the study revealed three key findings: (1) datasets with bounding box annotations result in shorter preprocessing times and superior model performance compared to polygon annotations; (2) although models trained with polygon annotations may have lower accuracy, they provide more detailed information on wing length and phenotypic traits; and (3) the wing vein system, rather than the wing outline, is the critical factor in classification accuracy.","PeriodicalId":501320,"journal":{"name":"bioRxiv - Ecology","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.01.610694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the digitization of insect collections and the application of deep learning models to improve this process. During a one-hour filming session, 141 images of dragonfly specimens from the Cornell University Insect Collection were captured and preprocessed using five distinct methods: (1) adding box annotations around the wings, (2) adding polygon annotations to outline the forewings and hindwings, (3) removing vein system images, (4) retaining only the wing outline images, and (5) grouping by automatically measured wing size and classifying species within those groups. By comparing YOLOv8 models trained on datasets with these different preprocessing methods, the study revealed three key findings: (1) datasets with bounding box annotations result in shorter preprocessing times and superior model performance compared to polygon annotations; (2) although models trained with polygon annotations may have lower accuracy, they provide more detailed information on wing length and phenotypic traits; and (3) the wing vein system, rather than the wing outline, is the critical factor in classification accuracy.
YOLOv8 利用翅膀图像实现蜻蜓物种自动分类
本研究调查了昆虫藏品的数字化以及应用深度学习模型改进这一过程的情况。在一个小时的拍摄过程中,我们采集了康奈尔大学昆虫收藏馆的 141 张蜻蜓标本图像,并使用五种不同的方法对其进行了预处理:(1) 在翅膀周围添加方框注释;(2) 添加多边形注释以勾勒前翅和后翅;(3) 删除脉络系统图像;(4) 仅保留翅膀轮廓图像;(5) 根据自动测量的翅膀尺寸进行分组,并在这些组中对物种进行分类。通过比较在采用这些不同预处理方法的数据集上训练的 YOLOv8 模型,该研究揭示了三个关键发现:(1) 与多边形注释相比,采用边界框注释的数据集可缩短预处理时间并提高模型性能;(2) 尽管采用多边形注释训练的模型准确率可能较低,但它们提供了有关翅长和表型特征的更详细信息;(3) 翅脉系统而不是翅轮廓是影响分类准确率的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信