{"title":"Bit error rate of M-pulse position modulated laser beams for vertical links operating in weak oceanic turbulence","authors":"Hamza Gerçekcioğlu, Yahya Baykal","doi":"10.1088/2040-8986/ad44ae","DOIUrl":null,"url":null,"abstract":"The on-axis scintillation index of laser beams is investigated by employing the Rytov method in a weakly turbulent oceanic medium for up/downlink coupling of laser communication between any underwater vehicles or divers. For vertical links, the formulation of the on-axis scintillation index of laser beams is derived analytically and evaluated for plane, collimated Gaussian and spherical beams in specific mediums, including the Atlantic Ocean at mid and low latitudes associating temperature and salinity changes at low latitudes, at mid latitude-summer and at mid latitude-winter. Using the scintillation index, bit error rate (BER) performance of M-pulse position modulation is investigated for these types of laser beams. The variations of the scintillation index against the uplink/downlink propagation distances, source size and zenith angle are examined, and BER variations versus the Kolmogorov microscale and the symbol orders, and results are compared. It is noted that the behavior of the scintillation index that depends on the relative strength of temperature and salinity fluctuations which changes in depth, is different for uplink/downlink and for each latitude due to its distinct characteristics. The source size that minimizes the scintillation index values is in the range of about 0.1 cm–0.2 cm for all latitudes.","PeriodicalId":16775,"journal":{"name":"Journal of Optics","volume":"9 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2040-8986/ad44ae","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The on-axis scintillation index of laser beams is investigated by employing the Rytov method in a weakly turbulent oceanic medium for up/downlink coupling of laser communication between any underwater vehicles or divers. For vertical links, the formulation of the on-axis scintillation index of laser beams is derived analytically and evaluated for plane, collimated Gaussian and spherical beams in specific mediums, including the Atlantic Ocean at mid and low latitudes associating temperature and salinity changes at low latitudes, at mid latitude-summer and at mid latitude-winter. Using the scintillation index, bit error rate (BER) performance of M-pulse position modulation is investigated for these types of laser beams. The variations of the scintillation index against the uplink/downlink propagation distances, source size and zenith angle are examined, and BER variations versus the Kolmogorov microscale and the symbol orders, and results are compared. It is noted that the behavior of the scintillation index that depends on the relative strength of temperature and salinity fluctuations which changes in depth, is different for uplink/downlink and for each latitude due to its distinct characteristics. The source size that minimizes the scintillation index values is in the range of about 0.1 cm–0.2 cm for all latitudes.
期刊介绍:
Journal of Optics publishes new experimental and theoretical research across all areas of pure and applied optics, both modern and classical. Research areas are categorised as:
Nanophotonics and plasmonics
Metamaterials and structured photonic materials
Quantum photonics
Biophotonics
Light-matter interactions
Nonlinear and ultrafast optics
Propagation, diffraction and scattering
Optical communication
Integrated optics
Photovoltaics and energy harvesting
We discourage incremental advances, purely numerical simulations without any validation, or research without a strong optics advance, e.g. computer algorithms applied to optical and imaging processes, equipment designs or material fabrication.