Pretrained-Guided Conditional Diffusion Models for Microbiome Data Analysis

Xinyuan Shi, Fangfang Zhu, Wenwen Min
{"title":"Pretrained-Guided Conditional Diffusion Models for Microbiome Data Analysis","authors":"Xinyuan Shi, Fangfang Zhu, Wenwen Min","doi":"arxiv-2408.07709","DOIUrl":null,"url":null,"abstract":"Emerging evidence indicates that human cancers are intricately linked to\nhuman microbiomes, forming an inseparable connection. However, due to limited\nsample sizes and significant data loss during collection for various reasons,\nsome machine learning methods have been proposed to address the issue of\nmissing data. These methods have not fully utilized the known clinical\ninformation of patients to enhance the accuracy of data imputation. Therefore,\nwe introduce mbVDiT, a novel pre-trained conditional diffusion model for\nmicrobiome data imputation and denoising, which uses the unmasked data and\npatient metadata as conditional guidance for imputating missing values. It is\nalso uses VAE to integrate the the other public microbiome datasets to enhance\nmodel performance. The results on the microbiome datasets from three different\ncancer types demonstrate the performance of our methods in comparison with\nexisting methods.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"104 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Emerging evidence indicates that human cancers are intricately linked to human microbiomes, forming an inseparable connection. However, due to limited sample sizes and significant data loss during collection for various reasons, some machine learning methods have been proposed to address the issue of missing data. These methods have not fully utilized the known clinical information of patients to enhance the accuracy of data imputation. Therefore, we introduce mbVDiT, a novel pre-trained conditional diffusion model for microbiome data imputation and denoising, which uses the unmasked data and patient metadata as conditional guidance for imputating missing values. It is also uses VAE to integrate the the other public microbiome datasets to enhance model performance. The results on the microbiome datasets from three different cancer types demonstrate the performance of our methods in comparison with existing methods.
用于微生物组数据分析的预训练引导条件扩散模型
新的证据表明,人类癌症与人类微生物组之间存在着密不可分的联系。然而,由于样本量有限以及在收集过程中由于各种原因造成的大量数据丢失,人们提出了一些机器学习方法来解决数据丢失的问题。这些方法没有充分利用已知的患者临床信息来提高数据估算的准确性。因此,我们引入了mbVDiT--一种新型的预训练条件扩散模型,用于微生物组数据的估算和去噪。它还使用 VAE 整合其他公共微生物组数据集,以提高模型性能。对三种不同癌症类型的微生物组数据集的研究结果表明,与现有方法相比,我们的方法性能更佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信