Insights, opportunities and challenges provided by large cell atlases

Martin Hemberg, Federico Marini, Shila Ghazanfar, Ahmad Al Ajami, Najla Abassi, Benedict Anchang, Bérénice A. Benayoun, Yue Cao, Ken Chen, Yesid Cuesta-Astroz, Zach DeBruine, Calliope A. Dendrou, Iwijn De Vlaminck, Katharina Imkeller, Ilya Korsunsky, Alex R. Lederer, Pieter Meysman, Clint Miller, Kerry Mullan, Uwe Ohler, Nikolaos Patikas, Jonas Schuck, Jacqueline HY Siu, Timothy J. Triche Jr., Alex Tsankov, Sander W. van der Laan, Masanao Yajima, Jean Yang, Fabio Zanini, Ivana Jelic
{"title":"Insights, opportunities and challenges provided by large cell atlases","authors":"Martin Hemberg, Federico Marini, Shila Ghazanfar, Ahmad Al Ajami, Najla Abassi, Benedict Anchang, Bérénice A. Benayoun, Yue Cao, Ken Chen, Yesid Cuesta-Astroz, Zach DeBruine, Calliope A. Dendrou, Iwijn De Vlaminck, Katharina Imkeller, Ilya Korsunsky, Alex R. Lederer, Pieter Meysman, Clint Miller, Kerry Mullan, Uwe Ohler, Nikolaos Patikas, Jonas Schuck, Jacqueline HY Siu, Timothy J. Triche Jr., Alex Tsankov, Sander W. van der Laan, Masanao Yajima, Jean Yang, Fabio Zanini, Ivana Jelic","doi":"arxiv-2408.06563","DOIUrl":null,"url":null,"abstract":"The field of single-cell biology is growing rapidly and is generating large\namounts of data from a variety of species, disease conditions, tissues, and\norgans. Coordinated efforts such as CZI CELLxGENE, HuBMAP, Broad Institute\nSingle Cell Portal, and DISCO, allow researchers to access large volumes of\ncurated datasets. Although the majority of the data is from scRNAseq\nexperiments, a wide range of other modalities are represented as well. These\nresources have created an opportunity to build and expand the computational\nbiology ecosystem to develop tools necessary for data reuse, and for extracting\nnovel biological insights. Here, we highlight achievements made so far, areas\nwhere further development is needed, and specific challenges that need to be\novercome.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The field of single-cell biology is growing rapidly and is generating large amounts of data from a variety of species, disease conditions, tissues, and organs. Coordinated efforts such as CZI CELLxGENE, HuBMAP, Broad Institute Single Cell Portal, and DISCO, allow researchers to access large volumes of curated datasets. Although the majority of the data is from scRNAseq experiments, a wide range of other modalities are represented as well. These resources have created an opportunity to build and expand the computational biology ecosystem to develop tools necessary for data reuse, and for extracting novel biological insights. Here, we highlight achievements made so far, areas where further development is needed, and specific challenges that need to be overcome.
大型细胞图谱提供的见解、机遇和挑战
单细胞生物学领域发展迅速,正在产生来自各种物种、疾病、组织和器官的大量数据。在 CZI CELLxGENE、HuBMAP、Broad InstituteSingle Cell Portal 和 DISCO 等机构的协调努力下,研究人员可以访问大量经过整理的数据集。虽然大部分数据来自 scRNAseq 实验,但也有大量其他模式的数据。这些资源为建立和扩展计算生物学生态系统创造了机会,以开发数据再利用和提取新生物学见解所需的工具。在此,我们将重点介绍迄今为止取得的成就、需要进一步发展的领域以及需要克服的具体挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信