Toward Capturing Genetic Epistasis From Multivariate Genome-Wide Association Studies Using Mixed-Precision Kernel Ridge Regression

Hatem Ltaief, Rabab Alomairy, Qinglei Cao, Jie Ren, Lotfi Slim, Thorsten Kurth, Benedikt Dorschner, Salim Bougouffa, Rached Abdelkhalak, David E. Keyes
{"title":"Toward Capturing Genetic Epistasis From Multivariate Genome-Wide Association Studies Using Mixed-Precision Kernel Ridge Regression","authors":"Hatem Ltaief, Rabab Alomairy, Qinglei Cao, Jie Ren, Lotfi Slim, Thorsten Kurth, Benedikt Dorschner, Salim Bougouffa, Rached Abdelkhalak, David E. Keyes","doi":"arxiv-2409.01712","DOIUrl":null,"url":null,"abstract":"We exploit the widening margin in tensor-core performance between\n[FP64/FP32/FP16/INT8,FP64/FP32/FP16/FP8/INT8] on NVIDIA [Ampere,Hopper] GPUs to\nboost the performance of output accuracy-preserving mixed-precision computation\nof Genome-Wide Association Studies (GWAS) of 305K patients from the UK BioBank,\nthe largest-ever GWAS cohort studied for genetic epistasis using a multivariate\napproach. Tile-centric adaptive-precision linear algebraic techniques motivated\nby reducing data motion gain enhanced significance with low-precision GPU\narithmetic. At the core of Kernel Ridge Regression (KRR) techniques for GWAS\nlie compute-bound cubic-complexity matrix operations that inhibit scaling to\naspirational dimensions of the population, genotypes, and phenotypes. We\naccelerate KRR matrix generation by redesigning the computation for Euclidean\ndistances to engage INT8 tensor cores while exploiting symmetry.We accelerate\nsolution of the regularized KRR systems by deploying a new four-precision\nCholesky-based solver, which, at 1.805 mixed-precision ExaOp/s on a nearly full\nAlps system, outperforms the state-of-the-art CPU-only REGENIE GWAS software by\nfive orders of magnitude.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We exploit the widening margin in tensor-core performance between [FP64/FP32/FP16/INT8,FP64/FP32/FP16/FP8/INT8] on NVIDIA [Ampere,Hopper] GPUs to boost the performance of output accuracy-preserving mixed-precision computation of Genome-Wide Association Studies (GWAS) of 305K patients from the UK BioBank, the largest-ever GWAS cohort studied for genetic epistasis using a multivariate approach. Tile-centric adaptive-precision linear algebraic techniques motivated by reducing data motion gain enhanced significance with low-precision GPU arithmetic. At the core of Kernel Ridge Regression (KRR) techniques for GWAS lie compute-bound cubic-complexity matrix operations that inhibit scaling to aspirational dimensions of the population, genotypes, and phenotypes. We accelerate KRR matrix generation by redesigning the computation for Euclidean distances to engage INT8 tensor cores while exploiting symmetry.We accelerate solution of the regularized KRR systems by deploying a new four-precision Cholesky-based solver, which, at 1.805 mixed-precision ExaOp/s on a nearly full Alps system, outperforms the state-of-the-art CPU-only REGENIE GWAS software by five orders of magnitude.
利用混合精度核岭回归从多变量全基因组关联研究中捕捉遗传外显性
我们利用英伟达™(NVIDIA®)[Ampere,Hopper] GPU 上[FP64/FP32/FP16/INT8,FP64/FP32/FP16/FP8/INT8]之间不断扩大的张量核性能差距,提高了对英国生物库(UK BioBank)305K 患者的全基因组关联研究(GWAS)的输出精度保护混合精度计算的性能。以瓦片为中心的自适应精度线性代数技术以减少数据运动为动机,通过低精度 GPU 算法获得了更大的意义。用于 GWAS 的核岭上回归(KRR)技术的核心是计算约束立方复杂度矩阵运算,这种运算会抑制扩展到种群、基因型和表型的灵感维度。我们通过重新设计欧几里得和间距的计算,在利用对称性的同时让 INT8 张量内核参与其中,从而加速了 KRR 矩阵的生成。我们通过部署一种新的基于四精度 Cholesky 的求解器,加速了正则化 KRR 系统的求解,该求解器在几乎全 Alps 系统上的混合精度为 1.805 ExaOp/s,比最先进的仅使用 CPU 的 REGENIE GWAS 软件高出五个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信