Inverse Design and Boundary Controllability for the Chromatography System

IF 1.2 3区 数学 Q1 MATHEMATICS
Giuseppe Maria Coclite, Nicola De Nitti, Carlotta Donadello, Florian Peru
{"title":"Inverse Design and Boundary Controllability for the Chromatography System","authors":"Giuseppe Maria Coclite, Nicola De Nitti, Carlotta Donadello, Florian Peru","doi":"10.1007/s00032-024-00402-y","DOIUrl":null,"url":null,"abstract":"<p>We consider the prototypical example of the <span>\\(2\\times 2\\)</span> liquid chromatography system and characterize the set of initial data leading to a given attainable profile at <span>\\(t=T\\)</span>. For profiles that are not attainable at time <i>T</i>, we study a non-smooth optimization problem: recovering the initial data that lead as close as possible to the target in the <span>\\(L^2\\)</span>-norm. We then study the system on a bounded domain and use a boundary control to steer its dynamics to a given trajectory. Finally, we implement a suitable finite volumes scheme to illustrate these results and show its numerical convergence. Minor modifications of our arguments apply to the Keyfitz–Kranzer system.</p>","PeriodicalId":49811,"journal":{"name":"Milan Journal of Mathematics","volume":"22 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Milan Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00032-024-00402-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the prototypical example of the \(2\times 2\) liquid chromatography system and characterize the set of initial data leading to a given attainable profile at \(t=T\). For profiles that are not attainable at time T, we study a non-smooth optimization problem: recovering the initial data that lead as close as possible to the target in the \(L^2\)-norm. We then study the system on a bounded domain and use a boundary control to steer its dynamics to a given trajectory. Finally, we implement a suitable finite volumes scheme to illustrate these results and show its numerical convergence. Minor modifications of our arguments apply to the Keyfitz–Kranzer system.

Abstract Image

色谱系统的逆向设计和边界可控性
我们考虑了液相色谱系统的原型,并描述了在 \(t=T\) 时导致给定可实现剖面的初始数据集的特征。对于在 T 时无法实现的剖面,我们研究了一个非平滑优化问题:恢复初始数据,使其尽可能接近 \(L^2\)-norm 中的目标。然后,我们在有界域上研究该系统,并使用边界控制将其动态转向给定轨迹。最后,我们采用合适的有限体积方案来说明这些结果,并展示其数值收敛性。我们对Keyfitz-Kranzer系统的论证稍作修改即可应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
23
审稿时长
>12 weeks
期刊介绍: Milan Journal of Mathematics (MJM) publishes high quality articles from all areas of Mathematics and the Mathematical Sciences. The authors are invited to submit "articles with background", presenting a problem of current research with its history and its developments, the current state and possible future directions. The presentation should render the article of interest to a wider audience than just specialists. Many of the articles will be "invited contributions" from speakers in the "Seminario Matematico e Fisico di Milano". However, also other authors are welcome to submit articles which are in line with the "Aims and Scope" of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信