Yu Nie, Xiaotian Zhang, Yihua Hu, Mohammad Nasr Esfahani
{"title":"Automatic Power Direction Control of Dual Active Bridge/Triple Active Bridge Converter in Emergency Energy Supply for Sustainability","authors":"Yu Nie, Xiaotian Zhang, Yihua Hu, Mohammad Nasr Esfahani","doi":"10.3390/su16187932","DOIUrl":null,"url":null,"abstract":"With their multidirectional power flow capability, dual active bridge (DAB) and triple active bridge (TAB) converters find application in energy routers as DC/DC transfer components for emergency energy supply during significant power outages. These converters ensure stable sustainable power transmission across various energy sources while enabling high-power conversion. However, controlling power direction poses a challenge in DAB/TAB converters for emergency energy supply, typically a rapid change of power direction of any port of DAB/TAB converters. To address this problem, this study proposes a novel automatic power direction control method for DAB/TAB converters, enabling bidirectional power transmission without manual intervention based on the state of charge (SOC) of battery for emergency energy supply. This method realizes the change of power direction of each port in DAB/TAB converter automatically according to different situations, even in emergencies. Given the now widespread shortage of emergency energy and the higher cost of labor regulation, this approach simplifies operations and enhances system safety and sustainability by eliminating the need for human supervision. A well-implemented automatic control method ensures efficient and consistent power transfer within the system by change the direction in about 3 s, whenever power direction adjustment is necessary.","PeriodicalId":22183,"journal":{"name":"Sustainability","volume":"690 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainability","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/su16187932","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
With their multidirectional power flow capability, dual active bridge (DAB) and triple active bridge (TAB) converters find application in energy routers as DC/DC transfer components for emergency energy supply during significant power outages. These converters ensure stable sustainable power transmission across various energy sources while enabling high-power conversion. However, controlling power direction poses a challenge in DAB/TAB converters for emergency energy supply, typically a rapid change of power direction of any port of DAB/TAB converters. To address this problem, this study proposes a novel automatic power direction control method for DAB/TAB converters, enabling bidirectional power transmission without manual intervention based on the state of charge (SOC) of battery for emergency energy supply. This method realizes the change of power direction of each port in DAB/TAB converter automatically according to different situations, even in emergencies. Given the now widespread shortage of emergency energy and the higher cost of labor regulation, this approach simplifies operations and enhances system safety and sustainability by eliminating the need for human supervision. A well-implemented automatic control method ensures efficient and consistent power transfer within the system by change the direction in about 3 s, whenever power direction adjustment is necessary.
期刊介绍:
Sustainability (ISSN 2071-1050) is an international and cross-disciplinary scholarly, open access journal of environmental, cultural, economic and social sustainability of human beings, which provides an advanced forum for studies related to sustainability and sustainable development. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research relating to natural sciences, social sciences and humanities in as much detail as possible in order to promote scientific predictions and impact assessments of global change and development. Full experimental and methodical details must be provided so that the results can be reproduced.