Songtao Yu, Houdong Liu, Qian Kang, Juan Cheng, Yingli Gong, Yuxian Ke
{"title":"Research on the Fire Resilience Assessment of Ancient Architectural Complexes Based on the AHP-CRITIC Method","authors":"Songtao Yu, Houdong Liu, Qian Kang, Juan Cheng, Yingli Gong, Yuxian Ke","doi":"10.3390/su16188022","DOIUrl":null,"url":null,"abstract":"Ancient architectural complexes are an important part of human cultural heritage, carrying a wealth of historical and cultural information. However, fire safety issues in these complexes are becoming increasingly prominent, and it is urgent to assess and enhance their fire resilience to support sustainable development. This paper takes ancient architectural complexes as the research object and establishes a fire resilience evaluation indicator system for ancient architectural complexes, which includes 25 third-level indicators categorized under architectural characteristics, facility factors, management factors, and social factors. Then, this paper combines the AHP method and the CRITIC method to determine the weight of each indicator. The results show that architectural features and facility factors are key level 2 indicators affecting the fire resilience of ancient architectural complexes. The fire resistance rate, building materials, automatic alarm system, etc., are key level 3 indicators influencing the fire resilience of ancient architectural complexes. It is suggested that efforts should be made to enhance the fire resilience of ancient architectural complexes by improving the fire resistance rate, strengthening smart early warning systems, and intensifying the ensuring of firefighting responses. This paper provides valuable insights and recommendations for effectively preventing fire disasters in ancient architectural complexes, thereby supporting their sustainable management and long-term conservation.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/su16188022","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Ancient architectural complexes are an important part of human cultural heritage, carrying a wealth of historical and cultural information. However, fire safety issues in these complexes are becoming increasingly prominent, and it is urgent to assess and enhance their fire resilience to support sustainable development. This paper takes ancient architectural complexes as the research object and establishes a fire resilience evaluation indicator system for ancient architectural complexes, which includes 25 third-level indicators categorized under architectural characteristics, facility factors, management factors, and social factors. Then, this paper combines the AHP method and the CRITIC method to determine the weight of each indicator. The results show that architectural features and facility factors are key level 2 indicators affecting the fire resilience of ancient architectural complexes. The fire resistance rate, building materials, automatic alarm system, etc., are key level 3 indicators influencing the fire resilience of ancient architectural complexes. It is suggested that efforts should be made to enhance the fire resilience of ancient architectural complexes by improving the fire resistance rate, strengthening smart early warning systems, and intensifying the ensuring of firefighting responses. This paper provides valuable insights and recommendations for effectively preventing fire disasters in ancient architectural complexes, thereby supporting their sustainable management and long-term conservation.