A Continual and Incremental Learning Approach for TinyML On-device Training Using Dataset Distillation and Model Size Adaption

Marcus Rüb, Philipp Tuchel, Axel Sikora, Daniel Mueller-Gritschneder
{"title":"A Continual and Incremental Learning Approach for TinyML On-device Training Using Dataset Distillation and Model Size Adaption","authors":"Marcus Rüb, Philipp Tuchel, Axel Sikora, Daniel Mueller-Gritschneder","doi":"arxiv-2409.07114","DOIUrl":null,"url":null,"abstract":"A new algorithm for incremental learning in the context of Tiny Machine\nlearning (TinyML) is presented, which is optimized for low-performance and\nenergy efficient embedded devices. TinyML is an emerging field that deploys\nmachine learning models on resource-constrained devices such as\nmicrocontrollers, enabling intelligent applications like voice recognition,\nanomaly detection, predictive maintenance, and sensor data processing in\nenvironments where traditional machine learning models are not feasible. The\nalgorithm solve the challenge of catastrophic forgetting through the use of\nknowledge distillation to create a small, distilled dataset. The novelty of the\nmethod is that the size of the model can be adjusted dynamically, so that the\ncomplexity of the model can be adapted to the requirements of the task. This\noffers a solution for incremental learning in resource-constrained\nenvironments, where both model size and computational efficiency are critical\nfactors. Results show that the proposed algorithm offers a promising approach\nfor TinyML incremental learning on embedded devices. The algorithm was tested\non five datasets including: CIFAR10, MNIST, CORE50, HAR, Speech Commands. The\nfindings indicated that, despite using only 43% of Floating Point Operations\n(FLOPs) compared to a larger fixed model, the algorithm experienced a\nnegligible accuracy loss of just 1%. In addition, the presented method is\nmemory efficient. While state-of-the-art incremental learning is usually very\nmemory intensive, the method requires only 1% of the original data set.","PeriodicalId":501301,"journal":{"name":"arXiv - CS - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new algorithm for incremental learning in the context of Tiny Machine learning (TinyML) is presented, which is optimized for low-performance and energy efficient embedded devices. TinyML is an emerging field that deploys machine learning models on resource-constrained devices such as microcontrollers, enabling intelligent applications like voice recognition, anomaly detection, predictive maintenance, and sensor data processing in environments where traditional machine learning models are not feasible. The algorithm solve the challenge of catastrophic forgetting through the use of knowledge distillation to create a small, distilled dataset. The novelty of the method is that the size of the model can be adjusted dynamically, so that the complexity of the model can be adapted to the requirements of the task. This offers a solution for incremental learning in resource-constrained environments, where both model size and computational efficiency are critical factors. Results show that the proposed algorithm offers a promising approach for TinyML incremental learning on embedded devices. The algorithm was tested on five datasets including: CIFAR10, MNIST, CORE50, HAR, Speech Commands. The findings indicated that, despite using only 43% of Floating Point Operations (FLOPs) compared to a larger fixed model, the algorithm experienced a negligible accuracy loss of just 1%. In addition, the presented method is memory efficient. While state-of-the-art incremental learning is usually very memory intensive, the method requires only 1% of the original data set.
利用数据集蒸馏和模型大小调整实现 TinyML 设备上训练的持续增量学习方法
本文介绍了微型机器学习(TinyML)背景下的增量学习新算法,该算法针对低性能、高能效的嵌入式设备进行了优化。TinyML 是一个新兴领域,它在微控制器等资源受限的设备上部署机器学习模型,在传统机器学习模型不可行的环境中实现语音识别、异常检测、预测性维护和传感器数据处理等智能应用。该算法通过使用知识蒸馏来创建一个小型蒸馏数据集,从而解决了灾难性遗忘的难题。这种方法的新颖之处在于,模型的大小可以动态调整,因此模型的复杂度可以适应任务的要求。这为资源受限环境下的增量学习提供了解决方案,在这种环境下,模型大小和计算效率都是关键因素。结果表明,所提出的算法为嵌入式设备上的 TinyML 增量学习提供了一种很有前景的方法。该算法在五个数据集上进行了测试,包括这些数据集包括:CIFAR10、MNIST、CORE50、HAR、语音命令。测试结果表明,尽管与更大的固定模型相比,该算法只使用了 43% 的浮点运算(FLOPs),但其准确率损失却微乎其微,仅为 1%。此外,该方法还具有内存效率高的特点。最先进的增量学习通常需要大量内存,而该方法只需要原始数据集的 1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信