DEMAU: Decompose, Explore, Model and Analyse Uncertainties

Arthur Hoarau, Vincent Lemaire
{"title":"DEMAU: Decompose, Explore, Model and Analyse Uncertainties","authors":"Arthur Hoarau, Vincent Lemaire","doi":"arxiv-2409.08105","DOIUrl":null,"url":null,"abstract":"Recent research in machine learning has given rise to a flourishing\nliterature on the quantification and decomposition of model uncertainty. This\ninformation can be very useful during interactions with the learner, such as in\nactive learning or adaptive learning, and especially in uncertainty sampling.\nTo allow a simple representation of these total, epistemic (reducible) and\naleatoric (irreducible) uncertainties, we offer DEMAU, an open-source\neducational, exploratory and analytical tool allowing to visualize and explore\nseveral types of uncertainty for classification models in machine learning.","PeriodicalId":501301,"journal":{"name":"arXiv - CS - Machine Learning","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent research in machine learning has given rise to a flourishing literature on the quantification and decomposition of model uncertainty. This information can be very useful during interactions with the learner, such as in active learning or adaptive learning, and especially in uncertainty sampling. To allow a simple representation of these total, epistemic (reducible) and aleatoric (irreducible) uncertainties, we offer DEMAU, an open-source educational, exploratory and analytical tool allowing to visualize and explore several types of uncertainty for classification models in machine learning.
DEMAU:分解、探索、模拟和分析不确定性
最近的机器学习研究催生了大量关于模型不确定性量化和分解的文献。这些信息在与学习者的交互过程中非常有用,比如非主动学习或自适应学习,尤其是在不确定性采样中。为了能够简单地表示这些总的不确定性、认识论的(可还原的)不确定性和理论的(不可还原的)不确定性,我们提供了 DEMAU,这是一个开源的教育、探索和分析工具,可以可视化和探索机器学习中分类模型的各种类型的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信